化工进展 ›› 2021, Vol. 40 ›› Issue (7): 3826-3836.DOI: 10.16085/j.issn.1000-6613.2020-1640
收稿日期:
2020-08-17
修回日期:
2020-10-26
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
栾伟玲
作者简介:
毛韬博(1996—),男,硕士研究生,研究方向为双极板涂层。E-mail:MAO Taobo(), LUAN Weiling(), FU Qingqing
Received:
2020-08-17
Revised:
2020-10-26
Online:
2021-07-06
Published:
2021-07-19
Contact:
LUAN Weiling
摘要:
聚苯胺具有独特的导电性和电化学性能,近年来随着燃料电池的发展成为双极板防护的重要材料。然而,聚苯胺涂层在质子交换膜燃料电池高温强酸的工作环境中长期耐蚀性仍无法满足要求,限制了该材料的规模应用。本文综述了聚苯胺基涂层在质子交换膜燃料电池双极板上应用的最新研究进展,包括通过掺杂和共聚改性的聚苯胺涂层、引入高分子材料和纳米材料制备的聚苯胺基复合涂层;分析了各类典型涂层的电化学测试性能结果,总结了聚苯胺基复合涂层的耐蚀机理。最后总结了聚苯胺基涂层研究中目前存在的问题,并对研究方向进行了展望,指出统一测试标准对材料性能评价和商业应用具有重要意义,且今后应重点加强纳米材料复合涂层的研究,并基于原位观测和表征技术对涂层机理进行深入解析。
中图分类号:
毛韬博, 栾伟玲, 付青青. 聚苯胺基涂层在质子交换膜燃料电池金属双极板上的应用进展[J]. 化工进展, 2021, 40(7): 3826-3836.
MAO Taobo, LUAN Weiling, FU Qingqing. Recent progress on polyaniline-based coatings on bipolar plates of proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3826-3836.
涂层种类 | 基体材料 | 涂层材料 | 极化测试条件 | 动电位极化测试 | 接触电阻/mΩ·cm2 | 恒电位腐蚀电流密度/μA·cm-2 | 参考文献 | |
---|---|---|---|---|---|---|---|---|
腐蚀电位/V | 腐蚀电流密度/μA·cm-2 | |||||||
聚苯胺 | 304SS | PANI | pH=3,H2SO4 | 0.34VSCE | <1 | 200 | — | [ |
1Cr18Ni9Ti不锈钢 | PANI | 0.01mol/L Na2SO4+0.01mol/L HCl,80℃ | 0.25VSCE | — | — | — | [ | |
掺杂改性聚苯胺 | 304SS | PANI | 1mol/L H2SO4 | 0.211VSCE | 0.05 | — | <0.4(+0.45VSCE,1h后) | [ |
共聚改性聚苯胺 | 低碳钢 | 聚(AN-co-PDA-co-XY)ZnO | 0.1mol/L HCl | -0.316VAg/AgCl | 0.89 | — | — | [ |
聚苯胺/高分子复合 | 304SS | PPy/PANI | 0.1mol/L H2SO4 | 0.114VSCE (阴极) 0.064VSCE (阳极) | 0.161(阴极) 0.206(阳极) | — | <1(+0.6VSCE,4h后) >-250(-0.24VSCE,4h后) | [ |
303SS | PANI/Zn-Pr | 1mol/L H2SO4,298K | 0.284VSCE | 0.15 | — | — | [ | |
聚苯胺/纳米二氧化钛复合 | 316L SS | Nb:TiO2纳米纤维/PANI | 0.3mol/L HCl,25℃ | 0.116VSCE 0.141VSCE | 6.31(阳极) 2.75(阴极) | — | <10(+0.6VSCE,6h后) >-50(-0.24VAg/AgCl,6h后) | [ |
316L SS | Nb:TiO2纳米颗粒/PANI | 1mol/L H2SO4,25℃ | 0.4VAg/AgCl | 12.9 | <1(+0.6VAg/AgCl,6h后) | [ | ||
316L SS | Ti0.96Nb0.04O2/PANI | 0.1mol/L H2SO4,80℃ | 0.151VAg/AgCl | 0.13(阴极) | — | 0.042(+0.6VAg/AgCl,6h后) | [ | |
聚苯胺/碳纳米管复合 | 316SS | CNT/PANI | 1mol/L H2SO4,80℃ | -0.4VSHE | — | — | 0.45(1VSHE,3h后) | [ |
Al | PANI-CNTs | 0.1mol/L H2SO4,298K | -0.324VSCE | 0.18 | — | — | [ | |
聚苯胺/金属及其纳米颗粒复合 | 316L SS | Cr-Ni/PANI | 0.5mol/L H2SO4+0.5mg/L F-,80℃ | 0.196VSCE (阳极) 0.223VSCE (阴极) | 1.6(阳极) 0.9(阴极) | 52.15 | 6~9(-0.1VSCE,10h后) <5(+0.6VSCE,10h后) | [ |
304L SS | PANI-TiN | 1mmol/L H2SO4,80℃ | 0.227VSHE | 0.005 | 32 | 0.4(1VSHE,3h后) | [ | |
316L SS | AuNP-PANI | 1mmol/L H2SO4,80℃ | 0.61VSHE | — | 16.6 | 0.63(1VSHE,3h后) | [ |
表1 各种聚苯胺基涂层金属双极板的电化学性能总结
涂层种类 | 基体材料 | 涂层材料 | 极化测试条件 | 动电位极化测试 | 接触电阻/mΩ·cm2 | 恒电位腐蚀电流密度/μA·cm-2 | 参考文献 | |
---|---|---|---|---|---|---|---|---|
腐蚀电位/V | 腐蚀电流密度/μA·cm-2 | |||||||
聚苯胺 | 304SS | PANI | pH=3,H2SO4 | 0.34VSCE | <1 | 200 | — | [ |
1Cr18Ni9Ti不锈钢 | PANI | 0.01mol/L Na2SO4+0.01mol/L HCl,80℃ | 0.25VSCE | — | — | — | [ | |
掺杂改性聚苯胺 | 304SS | PANI | 1mol/L H2SO4 | 0.211VSCE | 0.05 | — | <0.4(+0.45VSCE,1h后) | [ |
共聚改性聚苯胺 | 低碳钢 | 聚(AN-co-PDA-co-XY)ZnO | 0.1mol/L HCl | -0.316VAg/AgCl | 0.89 | — | — | [ |
聚苯胺/高分子复合 | 304SS | PPy/PANI | 0.1mol/L H2SO4 | 0.114VSCE (阴极) 0.064VSCE (阳极) | 0.161(阴极) 0.206(阳极) | — | <1(+0.6VSCE,4h后) >-250(-0.24VSCE,4h后) | [ |
303SS | PANI/Zn-Pr | 1mol/L H2SO4,298K | 0.284VSCE | 0.15 | — | — | [ | |
聚苯胺/纳米二氧化钛复合 | 316L SS | Nb:TiO2纳米纤维/PANI | 0.3mol/L HCl,25℃ | 0.116VSCE 0.141VSCE | 6.31(阳极) 2.75(阴极) | — | <10(+0.6VSCE,6h后) >-50(-0.24VAg/AgCl,6h后) | [ |
316L SS | Nb:TiO2纳米颗粒/PANI | 1mol/L H2SO4,25℃ | 0.4VAg/AgCl | 12.9 | <1(+0.6VAg/AgCl,6h后) | [ | ||
316L SS | Ti0.96Nb0.04O2/PANI | 0.1mol/L H2SO4,80℃ | 0.151VAg/AgCl | 0.13(阴极) | — | 0.042(+0.6VAg/AgCl,6h后) | [ | |
聚苯胺/碳纳米管复合 | 316SS | CNT/PANI | 1mol/L H2SO4,80℃ | -0.4VSHE | — | — | 0.45(1VSHE,3h后) | [ |
Al | PANI-CNTs | 0.1mol/L H2SO4,298K | -0.324VSCE | 0.18 | — | — | [ | |
聚苯胺/金属及其纳米颗粒复合 | 316L SS | Cr-Ni/PANI | 0.5mol/L H2SO4+0.5mg/L F-,80℃ | 0.196VSCE (阳极) 0.223VSCE (阴极) | 1.6(阳极) 0.9(阴极) | 52.15 | 6~9(-0.1VSCE,10h后) <5(+0.6VSCE,10h后) | [ |
304L SS | PANI-TiN | 1mmol/L H2SO4,80℃ | 0.227VSHE | 0.005 | 32 | 0.4(1VSHE,3h后) | [ | |
316L SS | AuNP-PANI | 1mmol/L H2SO4,80℃ | 0.61VSHE | — | 16.6 | 0.63(1VSHE,3h后) | [ |
1 | Sunghun CHO, LEE Jun Seop, Hyeonseo JOO. Recent developments of the solution-processable and highly conductive polyaniline composites for optical and electrochemical applications[J]. Polymers, 2019, 11(12): E1965. |
2 | RIAZ Ufana, NWAOHA Chikezie, ASHRAF S M, et al. Recent advances in corrosion protective composite coatings based on conducting polymers and natural resource derived polymers[J]. Progress in Organic Coatings, 2014, 77(4): 743-756. |
3 | 王万兵, 高晓辉, 李怀阳, 等. 石墨烯/导电聚合物复合防腐蚀材料制备及应用研究进展[J]. 化工进展, 2020, 39(3): 1080-1089. |
WANG Wanbing, GAO Xiaohui, LI Huaiyang, et al. Progress of preparation and application of graphene/conductive polymer composite anticorrosion materials[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1080-1089. | |
4 | UMOREN Savior A, SOLOMON Moses M. Protective polymeric films for industrial substrates: a critical review on past and recent applications with conducting polymers and polymer composites/nanocomposites[J]. Progress in Materials Science, 2019, 104: 380-450. |
5 | LIAO Guangfu, LI Qing, XU Zushun. The chemical modification of polyaniline with enhanced properties: a review[J]. Progress in Organic Coatings, 2019, 126: 35-43. |
6 | DEBERRY D W. Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating[J]. Journal of the Electrochemical Society, 1985, 132(5): 1022-1026. |
7 | JADOUN Sapana, RIAZ Ufana. A review on the chemical and electrochemical copolymerization of conducting monomers: recent advancements and future prospects[J]. Polymer-Plastics Technology and Materials, 2020, 59(5): 484-504. |
8 | ANTUNES Renato A, OLIVEIRA Mara Cristina, Gerhard ETT, et al. Corrosion of metal bipolar plates for PEM fuel cells: a review[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3632-3647. |
9 | MANDAL Pramod, KUMAR CHANDA Uttam, ROY Sudesna. A review of corrosion resistance method on stainless steel bipolar plate[J]. Materials Today: Proceedings, 2018, 5(9): 17852-17856. |
10 | JIANG L, SYED J A, GAO Y Z, et al. Electropolymerization of camphorsulfonic acid doped conductive polypyrrole anti-corrosive coating for 304SS bipolar plates[J]. Applied Surface Science, 2017, 426: 87-98. |
11 | SHANMUGHAM C, RAJENDRAN N. Corrosion resistance of poly p-phenylenediamine conducting polymer coated 316L SS bipolar plates for proton exchange membrane fuel cells[J]. Progress in Organic Coatings, 2015, 89: 42-49. |
12 | STEIN Tomer, Yair EIN-ELI. Challenges and perspectives of metal-based proton exchange membrane’s bipolar plates: exploring durability and longevity[J]. Energy Technology, 2020, 8(6): 2000007. |
13 | YI Peiyun, ZHANG Di, QIU Diankai, et al. Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(13): 6813-6843. |
14 | GUERRERO MORENO Nayibe, MYRIAM CISNEROS Molina, GERVASIO Dominic, et al. Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 897-906. |
15 | JIANG Tao, LUAN Weiling, REN Yufeng, et al. Synergistic heat treatment derived hollow-mesoporous-microporous Fe-N-C-SHT electrocatalyst for oxygen reduction reaction[J]. Microporous and Mesoporous Materials, 2020, 305: 110382. |
16 | SHAO Mminhua, CHANG Qiaowan, DODELET Jean-Pol, et al. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chemical Reviews, 2016, 116(6): 3594-3657. |
17 | WANG H, TURNER J A. Reviewing metallic PEMFC bipolar plates[J]. Fuel Cells, 2010, 10(4): 510-519. |
18 | DAUD W R W,ROSLI R E, MAJLAN E H, et al. PEM fuel cell system control: a review[J]. Renewable Energy, 2017, 113: 620-638. |
19 | WANG Cheng, WANG Shubo, PENG Linfa, et al. Recent progress on the key materials and components for proton exchange membrane fuel cells in vehicle applications[J]. Energies, 2016, 9(8): 603. |
20 | U.S. Department of Energy (DOE). 2017 Bipolar plate workshop report[EB/OL].[2020-08-03]. . |
21 | 王子乾, 杨林林, 孙海. 高温质子交换膜燃料电池性能衰减机理与缓解策略——第一部分:关键材料[J]. 化工进展, 2020, 39(6): 2370-2389. |
WANG Ziqian, YANG Linlin, SUN Hai. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells—Part Ⅰ: Materials[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2370-2389. | |
22 | AGARWAL Harshal, PANDEY Ramendra, BHAT Santoshkumar D. Improved polymer electrolyte fuel cell performance with membrane electrode assemblies using modified metallic plate: comparative study on impact of various coatings[J]. International Journal of Hydrogen Energy, 2020, 45(37): 18731-18742. |
23 | TAHERIAN Reza. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: materials, fabrication, and material selection[J]. Journal of Power Sources, 2014, 265: 370-390. |
24 | PEI Pucheng, CHEN Huicui. Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications: a review[J]. Applied Energy, 2014, 125: 60-75. |
25 | KAUSAR Ayesha. Corrosion prevention prospects of polymeric nanocomposites: a review[J]. Journal of Plastic Film & Sheeting, 2019, 35(2): 181-202. |
26 | WALSH F C, WANG Shuncai, ZHOU Nan. The electrodeposition of composite coatings: diversity, applications and challenges[J]. Current Opinion in Electrochemistry, 2020, 20: 8-19. |
27 | JOSEPH S, MCCLURE J C, CHIANELLI R, et al. Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells (PEMFC)[J]. International Journal of Hydrogen Energy, 2005, 30(12): 1339-1344. |
28 | HUANG N, LIANG C, YI B. Corrosion resistance of PANi-coated steel in simulated PEMFC anodic environment[J]. Materials and Corrosion, 2008, 59(1): 21-24. |
29 | LI Peipeng, DING Xianan, YANG Zhaoyi, et al. Electrochemical synthesis and characterization of polyaniline-coated PEMFC metal bipolar plates with improved corrosion resistance[J]. Ionics, 2018, 24(4): 1129-1137. |
30 | RAMANUJAM B T S, ANNAMALAI P K. Hybrid polymer composite materials: applications[M]. Cambridge: Woodhead Publishing, 2017: 1-34. |
31 | 曹慧, 庞智, 高肖汉, 等. 有机酸掺杂聚苯胺的研究进展[J]. 化工进展, 2016, 35(10): 3226-3235. |
CAO Hui, PANG Zhi, GAO Xiaohan, et al. Research progress of organic acids doped polyaniline[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3226-3235. | |
32 | SABOURI M, SHAHRABI T, HOSSEINI M G. Influence of tungstate ion dopants in corrosion protection behavior of polyaniline coating on mild steel[J]. Materials and Corrosion, 2008, 59(10): 814-818. |
33 | KAMARAJ K, SATHIYANARAYANAN S, MUTHUKRISHNAN S, et al. Corrosion protection of iron by benzoate doped polyaniline containing coatings[J]. Progress in Organic Coatings, 2009, 64(4): 460-465. |
34 | SHAHHOSSEINI Leyla, NATEGHI Mohammad Reza, KAZEMIPOUR Maryam, et al. Corrosion protective properties of poly (4-(2-thienyl) benzenamine) coating doped by dodecyl benzene sulphonate[J]. Synthetic Metals, 2016, 219: 44-51. |
35 | REN Y J, CHEN J, ZENG C L.Corrosion protection of type 304 stainless steel bipolar plates of proton-exchange membrane fuel cells by doped polyaniline coating[J]. Journal of Power Sources, 2010, 195(7): 1914-1919. |
36 | RASHID M, SABIR S, WAWARE U, et al. Electropolymerization of poly(aniline-co-p-toluidine) on copper and its application as a corrosion inhibitor[J]. Anti-Corrosion Methods and Materials, 2014, 61(5): 334-342. |
37 | MADHANKUMAR A, RAJENDRAN N. A promising copolymer of p-phenylendiamine and o-aminophenol: chemical and electrochemical synthesis, characterization and its corrosion protection aspect on mild steel[J]. Synthetic Metals, 2012, 162(1/2): 176-185. |
38 | PECH-RODRÍGUEZ W J,GONZÁLEZ-QUIJANO D,VARGAS-GUTIÉRREZ G, et al. Electrophoretic deposition of polypyrrole/Vulcan XC-72 corrosion protection coatings on SS-304 bipolar plates by asymmetric alternating current for PEM fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(29): 16740-16749. |
39 | ALAM Ruman, MOBIN Mohammad, ASLAM Jeenat. Investigation of anti-corrosive properties of poly(aniline-co-2-pyridylamine-co-2,3-xylidine) and its nanocomposite poly(aniline-co-2-pyridylamine-co-2,3-xylidine)/ZnO on mild steel in 0.1 M HCl[J]. Applied Surface Science, 2016, 368: 360-367. |
40 | RADHAMANI A V, LAU H C, RAMAKRISHNA S. Nanocomposite coatings on steel for enhancing the corrosion resistance: a review[J]. Journal of Composite Materials, 2020, 54(5): 681-701. |
41 | ABDEEN D H, HACHACH M E, Muammer KOC, et al. A review on the corrosion behaviour of nanocoatings on metallic substrates[J]. Materials (Basel), 2019, 12(2): 210. |
42 | 王辉, 郑建邦, 吴洪才. 电化学法制备聚苯胺/聚乙烯醇导电膜的性能[J]. 半导体光电, 2000, 21(1): 53-55. |
WANG Hui, ZHENG Jianbang, WU Hongcai. Properties of PAn/PVA conductive composite film prepared by electrochemical polymerization[J]. Semiconductor Optoelectronics, 2000, 21(1): 53-55. | |
43 | REN Y J, CHEN J, ZENG C L, et al. Electrochemical corrosion characteristics of conducting polypyrrole/polyaniline coatings in simulated environments of a proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(20): 8542-8549. |
44 | DEYAB M A, MELE G. Stainless steel bipolar plate coated with polyaniline/Zn-porphyrin composites coatings for proton exchange membrane fuel cell[J]. Scientific Reports, 2020, 10(1): 3277. |
45 | WANG Yanli, ZHANG Shenghua, WANG Ping, et al. Electropolymerization and corrosion protection performance of the Nb:TiO2 nanofibers/polyaniline composite coating[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 103: 190-198. |
46 | SU Shijian, KURAMOTO Noriyuki. Processable polyaniline-titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity[J]. Synthetic Metals, 2000, 114(2): 147-153. |
47 | ZHANG S X, KUNDALIYA D C, YU W, et al. Niobium doped TiO2: intrinsic transparent metallic anatase versus highly resistive rutile phase[J]. Journal of Applied Physics, 2007, 102(1): 013701. |
48 | WANG Yanli, ZHANG Shenghua, LU Zhaoxia, et al. Preparation and performances of electrically conductive Nb-doped TiO2 coatings for 316 stainless steel bipolar plates of proton-exchange membrane fuel cells[J]. Corrosion Science, 2018, 142: 249-257. |
49 | WANG Yanli, ZHANG Shenghua, WANG Ping, et al. Synthesis and corrosion protection of Nb doped TiO2 nanopowders modified polyaniline coating on 316 stainless steel bipolar plates for proton-exchange membrane fuel cells[J]. Progress in Organic Coatings, 2019, 137: 105327. |
50 | MADHAN KUMAR A, MIZANUR RAHMAN M, GASEM Z M. A promising nanocomposite from CNTs and nano-ceria: nanostructured fillers in polyurethane coatings for surface protection[J]. RSC Advances, 2015, 5(78): 63537-63544. |
51 | HASHEMPOUR Mazdak, SHARMA Surbhi, GONZALEZ Daniel, et al. The effect of electrodeposited PANI on corrosion behavior of 316 stainless steel coated by CVD grown MWCNTs under PEMFC bipolar plate working condition[J]. ECS Transactions, 2014, 63(1): 261-276. |
52 | DEYAB M A. Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2014, 268: 50-55. |
53 | 刘明, 田颖, 傅杰, 等. 改性316L不锈钢表面聚苯胺的制备及电化学性能[J]. 高等学校化学学报, 2016, 37(12): 2228-2235. |
LIU Ming, TIAN Ying, FU Jie, et al. Preparation and electrochemical performance of polyaniline film formed on acid-activated stainless steel316L[J]. Chemical Journal of Chinese Universities, 2016, 37(12): 2228-2235. | |
54 | SHARMA Surbhi, ZHANG Kun, GUPTA Gaurav, et al. Exploring PANI-TiN nanoparticle coatings in a PEFC environment: enhancing corrosion resistance and conductivity of stainless steel bipolar plates[J]. Energies, 2017, 10(8): 1152. |
55 | SHI Shuanger, ZHAO Yunyan, ZHANG Zhiming, et al. Corrosion protection of a novel SiO2@PANI coating for Q235 carbon steel[J]. Progress in Organic Coatings, 2019, 132: 227-234. |
56 | Mehdi SHABANI-NOOSHABADI,GHOREISHI S M, JAFARI Yaser, et al. Electrodeposition of polyaniline-montmorrilonite nanocomposite coatings on 316L stainless steel for corrosion prevention[J]. Journal of Polymer Research, 2014, 21(4):416. |
57 | OLAD Ali, NASERI Babak. Preparation, characterization and anticorrosive properties of a novel polyaniline/clinoptilolite nanocomposite[J]. Progress in Organic Coatings, 2010, 67(3): 233-238. |
58 | CHAUDHARI S, PATIL P P, MANDALE A B, et al. Use of poly(o-toluidine)/ZrO2 nanocomposite coatings for the corrosion protection of mild steel[J]. Journal of Applied Polymer Science, 2007, 106(1): 220-229. |
59 | MOSTAFAEI Amir, NASIRPOURI Farzad. Epoxy/polyaniline-ZnO nanorods hybrid nanocomposite coatings: synthesis, characterization and corrosion protection performance of conducting paints[J]. Progress in Organic Coatings, 2014, 77(1): 146-159. |
60 | ZHANG Kun, SHARMA Surbhi. Site-selective, low-loading, Au nanoparticle-polyaniline hybrid coatings with enhanced corrosion resistance and conductivity for fuel cells[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 277-286. |
61 | 郑燕升, 胡传波, 青勇权, 等. 聚苯胺复合防腐材料的研究进展[J]. 塑料工业, 2013, 41(12): 1-5, 20. |
ZHENG Yansheng, HU Chuanbo, QING Yongquan, et al. The research progress of polyaniline composite anticorrosion materials[J]. China Plastics Industry, 2013, 41(12): 1-5, 20. | |
62 | JAIN P, PATIDAR B, BHAWSAR J. Potential of nanoparticles as a corrosion inhibitor: a review[J]. Journal of Bio- and Tribo-Corrosion, 2020, 6(2): 1-12. |
63 | WANG Yanli, ZHANG Shenghua, LU Zhaoxia,et al. Preparation and performance of electrically conductive Nb-doped TiO2/polyaniline bilayer coating for 316L stainless steel bipolar plates of proton-exchange membrane fuel cells[J]. RSC Advances, 2018, 8(35): 19426-19431. |
[1] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[2] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[3] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[4] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[5] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[6] | 刘战剑, 付雨欣, 任丽娜, 张曦光, 袁中涛, 杨楠, 汪怀远. 超疏水涂层在防腐阻垢领域研究进展[J]. 化工进展, 2023, 42(6): 2999-3011. |
[7] | 任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096. |
[8] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
[9] | 何阳, 李思盈, 李传强, 袁小亚, 郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994. |
[10] | 薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456. |
[11] | 胡锦健, 李龙, 董子靖. 碳纳米材料在PU纱线基柔性应变传感器中的应用[J]. 化工进展, 2023, 42(2): 872-883. |
[12] | 于海强, 郭泉忠, 杜克勤, 汪川. 脉冲电沉积PbO2涂层在PEMFC不锈钢双极板上的应用[J]. 化工进展, 2023, 42(2): 917-924. |
[13] | 顾海洋, 王冬, 宗永忠, 付少海. 制革污泥蛋白质基生物质棉织物阻燃涂层的制备与阻燃性能[J]. 化工进展, 2023, 42(2): 641-649. |
[14] | 辛华, 彭琪, 李阳帆, 张岩, 陈悦, 李新琦. 含氟聚氨酯二甲基丙烯酸酯为芯材的微胶囊制备及自修复性能[J]. 化工进展, 2023, 42(10): 5406-5413. |
[15] | 刘洋, 赵恒, 李倩, 辛虎, 李杏涛. 全氟聚醚聚合物及其功能复合材料的研究进展[J]. 化工进展, 2023, 42(1): 321-335. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |