10 |
BRETT Daniel J L, ATKINSON Alan, BRANDON Nigel P, et al. Intermediate temperature solid oxide fuel cells[J]. Chemical Society Reviews, 2008, 37(8): 1568.
|
11 |
FAUNGNAWAKIJ Kajornsak, KIKUCHI Ryuji, EGUCHI Koichi. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether[J]. Journal of Power Sources, 2007, 164: 73-79.
|
12 |
张启俭, 杜凤, 何欣欣, 等. 二甲醚部分氧化重整制氢中的部分氧化催化剂的考察[J]. 催化学报, 2009, 30(6): 519-524.
|
|
ZHANG Qijian, DU Feng, HE Xinxin, et al. Hydrogen production by partial oxidation and reforming of dimethyl ether: investigation of partial oxidation catalysts[J]. Chinese Journal of Catalysis, 2009, 30(6): 519-524.
|
13 |
KANG Inyong, CARSTENSEN Hans-heinrich, DEAN Anthony M. Impact of gas-phase reactions in the mixing region upstream of a diesel fuel autothermal reformer[J]. Journal of Power Sources, 2011, 196(4): 2020-2026.
|
14 |
FAUNGNAWAKIJ Kajomsak, KIKUCHI Ryuji, EGUCHI Koichi. Thermodynamic evaluation of methanol steam reforming for hydrogen production[J]. Journal of Power Sources, 2006, 161(1): 87-94.
|
15 |
YAO Chengzhang, WANG Lucun, LIU Yongmei, et al. Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts[J]. Applied Catalysis A: General, 2006, 297(2): 151-158.
|
16 |
TRIMM David L, Ilsen ÖNSAN Z. Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles[J]. Catalysis Reviews, 2001, 43(1/2): 31-84.
|
17 |
SHISHIDO Tetsuya, YAMAMOTO Yoshihiro, MORIOKA Hiroyuki, et al. Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol[J]. Applied Catalysis A: General, 2004, 263(2): 249-253.
|
18 |
LIU Yi, CHEN Yiming, YU Hongpeng, et al. Bimetallic Ni-Co catalysts for co-productionof methane and liquid fuels from syngas[J]. Catalysis Today, 2021, 369: 167-174.
|
19 |
HIRAI Toshihide, IKENAGA Na-Oki, MIYAKE Takanori, et al. Production of hydrogen by steam reforming of glycerin on ruthenium catalyst[J]. Energy Fuels, 2005, 19: 1761-1762.
|
20 |
ARAQUE M, MARTÍNEZ L, VARGAS J. Hydrogen production by glycerol steam reforming over CeZrCo fluorite typeoxides[J]. Catalysis Today, 2011, 176: 352-356.
|
1 |
袁艳文, 赵立欣, 孟海波, 等. 生物质炭化热解气催化重整制取费-托合成气研究进展[J]. 化工进展, 2019, 38(S1): 152-158.
|
|
YUAN Yanwen, ZHAO Lixin, MENG Haibo, et al. Research on the preparation of Fischer-Tropsch synthesis gas by biomass carbonization pyrolysis gas catalytic reforming[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 152-158.
|
21 |
ADHIKARI Sushil, FERNANDO Sandun, HARYANTO Agus. Production of hydrogen by steam reforming of glycerine over alumina-supported metal catalysts[J]. Catalysis Today, 2007, 129: 355-364.
|
22 |
STEFAN Czernik, RICHARD French, CALVIN Feik, et al. Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes[J]. Industrial & Engineering Chemistry Research, 2002, 41(17): 4209-4215.
|
23 |
FATSIKOSTAS Athanasios N, VERYKIOS Xenophon E. Reaction network of steam reforming of ethanol over Ni-based catalysts[J]. Journal of Catalysis, 2004, 225(2): 439-452.
|
2 |
卢亮, 陈军昊, 王树荣. 模拟生物油分子蒸馏的响应面法工况优化[J]. 化工进展, 2018, 37(7): 2605-2612.
|
|
LU Liang, CHEN Junhao, WANG Shurong. Condition optimization of simulated bio-oil molecular distillation via response surface method[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2605-2612.
|
3 |
PTASINSKI K J, HAMELINCK C, KERKHOF P J A M. Exergy analysis of methanol from the sewage sludge process[J]. Energy Conversion & Management, 2002, 43(9-12): 1445-1457.
|
4 |
ADAMSON Kerry-Ann, PEARSON Peter. Hydrogen and methanol: a comparison of safety,economics,efficiencies and emissions[J]. Journal of Power Sources, 2000, 86(1/2): 548-555.
|
5 |
FANG Yanru, WU Yi, XIE Guanghui. Crop residue utilizations and potential for bioethanol production in China[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109-288.
|
6 |
JIANG Dong, HAO Mengmeng, FU Jingying, et al. Potential bioethanol production from sweet sorghum on marginal land in China[J]. Journal of Cleaner Production, 2019, 220: 225-234.
|
7 |
REGASSA Teshome H, WORTMANN Charles S. Sweet sorghum as a bioenergy crop: literature review[J]. Biomass and Bioenergy, 2014, 64: 348-355.
|
8 |
MA Fangrui, HANNA Milford A. Biodiesel production: a review[J]. Bioresour Technology, 1999, 70(1): 1-15.
|
9 |
WINCEWICZ Keegan C, COOPER Joyce S. Taxonomies of SOFC material and manufacturing alternatives[J]. Journal of Power Sources, 2005, 140(2): 280-296.
|
24 |
ANJANEYULU Chatla, COSTA Lídia O O D, RIBEIRO Mauro C, et al. Effect of Zn addition on the performance of Ni/Al2O3 catalyst for steam reforming of ethanol[J]. Applied Catalysis A: General, 2016, 519: 85-98.
|
25 |
WU Gaowei, ZHANG Chengxi, LI Shuirong, et al. Hydrogen production via glycerol steam reforming over Ni/Al2O3: influence of nickel precursors[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(8): 1052-1062.
|
26 |
LI Nanqi, PU Jian, CHI Bo, et al. Ethanol steam reforming with a Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ catalyst[J]. Materials Today Energy, 2019, 12: 371-378.
|
27 |
KIM Taeyoon, Kipyung AHN, VOHS John M, et al. Deactivation of ceria-based SOFC anodes in methanol[J]. Journal of Power Sources, 2007, 164(1): 42-48.
|
28 |
LIU Mingfei, PENG Ranran, DONG Dehua, et al. Direct liquid methanol-fueled solid oxide fuel cell[J]. Journal of Power Sources, 2008, 185(1): 188-192.
|
29 |
CIMENTI Massimiliano, HILL Josephine M. Direct utilization of methanol and ethanol in solid oxide fuel cells using Cu-Co(Ru)/Zr0.35Ce0.65O2-δ anodes[J]. Journal of Power Sources, 2010, 195(13): 3996-4001.
|
30 |
GAO Zhan, RAZA Rizwan, ZHU Bin, et al. Development of methanol-fueled low-temperature solid oxide fuel cells[J]. International Journal of Energy Research, 2011, 35(8): 690-696.
|
31 |
FARO M LO, REIS R M, SAGLIETTI G G A, et al. Solid oxide fuel cells fed with dry ethanol: the effect of a perovskite protective anodic layer containing dispersed Ni-alloy @ FeOx core-shell nanoparticles[J]. Applied Catalysis B: Environmental, 2018, 220: 98-110.
|
32 |
YE Xixaofeng, HUANG Bo, WANG S R, et al. Preparation and performance of a Cu-CeO2-ScSZ composite anode for SOFCs running on ethanol fuel[J]. Journal of Power Sources, 2007, 164(1): 203-209.
|
33 |
YE Xiaofeng, WANG S R, WANG Z R, et al. Use of a catalyst layer for anode-supported SOFCs running on ethanol fuel[J]. Journal of Power Sources, 2008, 177(2): 419-425.
|
34 |
FARO M LO, OLIVEIRA V L, REIS R M, et al. Solid oxide fuel cell be fed directly with dry glycerol[J]. Energy Technology, 2017, 7(1): 45-47.
|
35 |
PATCHARAVORACHOT Yaneeporn, SAEBE Dang, AUTHAYANUN Suthida. Hydrogen and power generation from supercritical water reforming of glycerol and pressurized SOFC integrated system: use of different CO2 adsorption process[J]. International Journal of Hydrogen Energy, 2018, 43(37): 17821-17834.
|
36 |
LENG Y J, CHAN S H, KHOR K A, et al. Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte[J]. International Journal of Hydrogen Energy, 2004, 29(10): 1025-1033.
|
37 |
TUYEN Tran, SHIRATORI Yusuke, SASAKI Kazunari. Feasibility of palm-biodiesel fuel for a direct internal reforming solid oxide fuel cell[J]. International Journal of Energy Research, 2013, 37(6): 609-616.
|
38 |
庄晓如, 徐心海, 夏鑫, 等. 甲醇蒸汽重整制氢反应动力学研究进展[J]. 化工进展, 2020, 39(1): 152-165.
|
|
ZHUANG Xiaoru, XU Xinhai, XIA Xin, et al. Review of reaction kinetics of methanol steam reforming for hydrogen production[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 152-165.
|
39 |
YONG S T, OOI C W, CHAI S P, et al. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes[J]. International Journal of Hydrogen Energy, 2013, 38(22): 9541-9552.
|
40 |
NIAZI Zahra, IRANKHAH Abdullah, WANG Yuan, et al. Cu, Mg and Co effect on nickel-ceria supported catalysts for ethanol steam reforming reaction[J]. International Journal of Hydrogen Energy, 2020, 45: 21512-21522.
|
41 |
ROSLAN Nurul Asmawati, ABIDIN Sumaiya Zainal, IDERIS Asmida. A review on glycerol reforming processes over Ni-based catalyst for hydrogen and syngas productions[J]. International Journal of Hydrogen Energy, 2020, 45: 18466-18489.
|
42 |
AMMARU I, CHEN H H, SHAO Y. Renewable hydrogen production from steam reforming of glycerol (SRG) over ceria-modified γ-alumina supported Ni catalyst[J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2328-2336.
|
43 |
FISHTIK I, ALEXANDER A, DATTA R, et al. A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions[J]. International Journal of Hydrogen Energy, 2000, 25(1): 31-45.
|
44 |
LIN Kuanhung, WANG Chenbin, CHEN Shuahua. Catalytic performance of steam reforming of ethanol at low temperature over LaNiO3 perovskite[J]. International Journal of Hydrogen Energy, 2013, 38(8): 3226-3232.
|
45 |
TAHERIAN Zahra, GHARAHSHIRAN Vahid Shahed, KHATAEE Alireza, et al. Comparative study of modified Ni catalysts over mesoporous CaO-Al2O3 support for CO2/methane reforming[J]. Catalysis Communications, 2020, 145: 106100.
|
46 |
SANTAMARIA Laura, LOPEZ Gartzen, ARREGI Aitor, et al. Catalytic steam reforming of biomass fast pyrolysis volatiles over Ni-Co bimetallic catalysts[J]. Journal of Industrial and Engineering Chemistry, 2020.
|
47 |
王文举. Ni催化剂催化乙醇重整制氢的研究[D]. 天津: 天津大学, 2009.
|
|
WANG Wenju. Reforming of ethanol for hydrogen production catalyzed by nickel catalysts[J]. Tianjin: Tianjin University, 2009.
|
48 |
Joongmyeon BAE, LEE Sangho, KIM Sunyoung, et al. Liquid fuel processing for hydrogen production:a review[J]. International Journal of Hydrogen Energy, 2016, 41: 19990-20022.
|
49 |
BSHISH Ahmed, YAKOOB Zahira, NARAYANAN Binitha, et al. Steam-reforming of ethanol for hydrogen production[J]. Chemical Papers, 2011, 65: 251.
|
50 |
TOEBES Marjolein L, BITTER Johannes H, A Jos Van DILLEN, et al. Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers[J]. Catalysis Today, 2002, 76(1): 33-42.
|
51 |
LI Shuirong, GONG Jinlong. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions[J]. Chemical Society Reviews,2014, 43(21): 7245-7256.
|
52 |
LI Yu, ZHANG Changsen, LIU Yonggang, et al. Coke formation on the surface of Ni/HZSM-5 and Ni-Cu/HZSM-5 catalysts during bio-oil hydrodeoxygenation[J]. Fuel, 2017, 189: 23-31.
|
53 |
ZHAO Lin, HAN Tong, WANG Hong, et al. Ni-Co alloy catalyst from LaNi1-xCoxO3 perovskite supported on zirconia for steam reforming of ethanol[J]. Applied Catalysis B: Environmental, 2016, 187: 19-29.
|
54 |
XU Wenqian, LIU Zongyuan, JOHNSTON-PECK Aaron C. Steam reforming of ethanol on Ni/CeO2:reaction pathway and interaction between Ni and the CeO2 support[J]. ACS Catalysis, 2013, 3(5): 975-984.
|