化工进展 ›› 2021, Vol. 40 ›› Issue (1): 111-129.DOI: 10.16085/j.issn.1000-6613.2020-0197
收稿日期:
2020-02-12
出版日期:
2021-01-05
发布日期:
2021-01-12
通讯作者:
孙海
作者简介:
王子乾(1994—),男,硕士研究生,研究方向为醇类燃料电池。E-mail:基金资助:
Ziqian WANG1,2,3(), Linlin YANG1,2, Hai SUN1,2()
Received:
2020-02-12
Online:
2021-01-05
Published:
2021-01-12
Contact:
Hai SUN
摘要:
近些年高温质子交换膜燃料电池(HT-PEMFC)在稳态操作条件下的耐久性已经得到了巨大的改善,然而动态或异常操作条件仍严重影响了HT-PEMFC的寿命。针对该问题,本文概述了HT-PEMFC常见操作条件的特点,系统地总结了常见动态或异常操作条件下电池性能的衰减机理及其相应的缓解策略,并整理了该领域内报道的加速应力测试方案与寿命预测方法。最后本文对HT-PEMFC未来的发展进行了展望,随着HT-PEMFC商品化进程的推进,未来新型在线检测/诊断技术的开发、标准化测试方案与寿命预测模型的建立、电堆或系统结构的优化以及装配工艺与生产线的设计等很有可能成为该领域内的研究重点。
中图分类号:
王子乾, 杨林林, 孙海. 高温质子交换膜燃料电池性能衰减机理与缓解策略——第二部分: 操作条件[J]. 化工进展, 2021, 40(1): 111-129.
Ziqian WANG, Linlin YANG, Hai SUN. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells—Part Ⅱ: Operation conditions[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 111-129.
1 | 王子乾, 杨林林, 孙海. 高温质子交换膜燃料电池性能衰减机理与缓解策略——第一部分:关键材料[J]. 化工进展, 2020, 39(6):2370-2389. |
WANG Ziqian, YANG Linlin, SUN Hai. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells—Part Ⅰ: Materials[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2370-2389. | |
2 | DOE. Fuel cell technologies office multi-year research, development, and demonstration plan[R]. DOE, 2016: 17-30. |
3 | OONO Y, SOUNAI A, HORI M. Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2012, 210: 366-373. |
4 | OONO Y, SOUNAI A, HORI M. Prolongation of lifetime of high temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2013, 241: 87-93. |
5 | SCHMIDT T, BAURMEISTER J. Durability and reliability in high-temperature reformed hydrogen PEFCs[J]. ECS Transactions, 2006, 3(1): 861-869. |
6 | SCHMIDT T J, BAURMEISTER J. Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode[J]. Journal of Power Sources, 2008, 176(2): 428-434. |
7 | YANG J S, CLEEMANN L N, STEENBERG T, et al. High molecular weight polybenzimidazole membranes for high temperature PEMFC[J]. Fuel Cells, 2014, 14(1): 7-15. |
8 | YU S, XIAO L, BENICEWICZ B C. Durability studies of PBI-based high temperature PEMFCs[J]. Fuel Cells, 2008, 8(3/4): 165-174. |
9 | XIAO L X, ZHANG H F, SCANLON E, et al. High-temperature polybenzimidazole fuel cell membranes via a sol-gel process[J]. Chemistry of Materials, 2005, 17(21): 5328-5333. |
10 | WANNEK C, KOHNEN B, OETJEN H F, et al. Durability of ABPBI-based MEAs for high temperature PEMFCs at different operating conditions[J]. Fuel Cells, 2008, 8(2): 87-95. |
11 | H-J LEE, KIM B G, LEE D H, et al. Demonstration of a 20W class high-temperature polymer electrolyte fuel cell stack with novel fabrication of a membrane electrode assembly[J]. International Journal of Hydrogen Energy, 2011, 36(9): 5521-5526. |
12 | YANG J, LI Q, CLEEMANN L N, et al. Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells[J]. Journal of Materials Chemistry, 2012, 22(22): 11185-11195. |
13 | AILI D, CLEEMANN L N, LI Q, et al. Thermal curing of PBI membranes for high temperature PEM fuel cells[J]. Journal of Materials Chemistry, 2012, 22(12): 5444-5453. |
14 | GALBIATI S, BARICCI A, CASALEGNO A, et al. Degradation in phosphoric acid doped polymer fuel cells: A 6000h parametric investigation[J]. International Journal of Hydrogen Energy, 2013, 38(15): 6469-6480. |
15 | KONDRATENKO M S, PONOMAREV I I, GALLYAMOV M O, et al. Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications[J]. Beilstein Journal of Nanotechnology, 2013, 4: 481-492. |
16 | MODESTOV A D, TARASEVICH M R, FILIMONOV V Y, et al. Degradation of high temperature MEA with PBI-H3PO4 membrane in a life test[J]. Electrochimica Acta, 2009, 54(27): 7121-7127. |
17 | MOçOTéGUY P, LUDWIG B, SCHOLTA J, et al. Long term testing in continuous mode of HT-PEMFC based H3PO4/PBI Celtec-P MEAs for μ-CHP applications[J]. Fuel Cells, 2009, 9(4): 325-348. |
18 | LIU F, KVESIĆ M, WIPPERMANN K, et al. Effect of spiral flow field design on performance and durability of HT-PEFCs[J]. Journal of the Electrochemical Society, 2013, 160(8): F892-F897. |
19 | MOLLEO M A, CHEN X, PLOEHN H J, et al. High polymer content 3,5-pyridine-polybenzimidazole copolymer membranes with improved compressive properties[J]. Fuel Cells, 2014, 14(1): 16-25. |
20 | JANßEN H, SUPRA J, LüKE L, et al. Development of HT-PEFC stacks in the kW range[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4705-4713. |
21 | PINAR F J, PILINSKI N, WAGNER P. Long-term testing of a high temperature polymer electrolyte membrane fuel cell: the effect of reactant gases[J]. AIChE Journal, 2016, 62(1): 217-227. |
22 | SUZUKI A, OONO Y, WILLIAMS M C, et al. Evaluation for sintering of electrocatalysts and its effect on voltage drops in high-temperature proton exchange membrane fuel cells (HT-PEMFC)[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18272-18289. |
23 | RASTEDT M, PINAR F J, WAGNER P, et al. Ultralow degradation rates in HT-PEM fuel cells[J]. ECS Transactions, 2016, 75(14): 301-315. |
24 | SøNDERGAARD T, CLEEMANN L N, BECKER H, et al. Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole[J]. Journal of Power Sources, 2017, 342: 570-578. |
25 | SUN X, LI Y, QI F, et al. Degradation studies of single cell and short stack for high temperature proton exchange membrane fuel cells based on PBI/H3PO4 membrane[J]. ChemistrySelect, 2019, 4(42): 12313-12319. |
26 | ZHANG T, WANG P, CHEN H, et al. A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition[J]. Applied Energy, 2018, 223: 249-262. |
27 | HARTNIG C, SCHMIDT T J. Simulated start-stop as a rapid aging tool for polymer electrolyte fuel cell electrodes[J]. Journal of Power Sources, 2011, 196(13): 5564-5572. |
28 | KANNAN A, KABZA A, SCHOLTA J. Long term testing of start-stop cycles on high temperature PEM fuel cell stack[J]. Journal of Power Sources, 2015, 277: 312-316. |
29 | KANNAN A, KACZEROWSKI J, KABZA A, et al. Operation strategies based on carbon corrosion and lifetime investigations for high temperature polymer electrolyte membrane fuel cell stacks[J]. Fuel Cells, 2018, 18(3): 287-298. |
30 | RASTEDT M, PINAR F J, PILINSKI N, et al. Effect of operation strategies on phosphoric acid loss in HT-PEM fuel cells[J]. ECS Transactions, 2016, 75(14): 455-469. |
31 | MOçOTéGUY P, LUDWIG B, SCHOLTA J, et al. Long-term testing in dynamic mode of HT-PEMFC H3PO4/PBI Celtec-P based membrane electrode assemblies for micro-CHP applications[J]. Fuel Cells, 2010, 10(2): 299-311. |
32 | THOMAS S, JEPPESEN C, STEENBERG T, et al. New load cycling strategy for enhanced durability of high temperature proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27230-27240. |
33 | PINAR F J, RASTEDT M, DYCK A, et al. Long-term operation of high temperature polymer electrolyte membrane fuel cells with fuel composition switching and oxygen enrichment[J]. Fuel Cells, 2018, 18(3): 260-269. |
34 | LIU S, RASINSKI M, RAHIM Y, et al. Influence of operating conditions on the degradation mechanism in high-temperature polymer electrolyte fuel cells[J]. Journal of Power Sources, 2019, 439: 227090. |
35 | ZHANG S, YUAN X-Z, HIN J N C, et al. Effects of open-circuit operation on membrane and catalyst layer degradation in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2010, 195(4): 1142-1148. |
36 | QI Z, BUELTE S. Effect of open circuit voltage on performance and degradation of high temperature PBI-H3PO4 fuel cells[J]. Journal of Power Sources, 2006, 161(2): 1126-1132. |
37 | TERANISHI K, KAWATA K, TSUSHIMA S, et al. Degradation mechanism of PEMFC under open circuit operation[J]. Electrochemical and Solid-State Letters, 2006, 9(10): A475-A477. |
38 | OHMA A, SUGA S, YAMAMOTO S, et al. Phenomenon analysis of PEFC for automotive use(1) membrane degradation behavior during OCV hold test[J]. ECS Transactions, 2006, 3(1): 519-529. |
39 | ARAYA S S, ZHOU F, LISO V, et al. A comprehensive review of PBI-based high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21310-21344. |
40 | LIU S, RASINSKI M, LIN Y, et al. Effects of constant load operations on platinum bands formation and cathode degradation in high-temperature polymer electrolyte fuel cells[J]. Electrochimica Acta, 2018, 289: 354-362. |
41 | SUGAWARA S, MARUYAMA T, NAGAHARA Y, et al. Performance decay of proton-exchange membrane fuel cells under open circuit conditions induced by membrane decomposition[J]. Journal of Power Sources, 2009, 187(2): 324-331. |
42 | JAVIER PINAR F, RASTEDT M, PILINSKI N, et al. Effect of idling temperature on high temperature polymer electrolyte membrane fuel cell degradation under simulated start/stop cycling conditions[J]. International Journal of Hydrogen Energy, 2016, 41(42): 19463-19474. |
43 | KAMAL R, CHAN S H. Sensitivity analysis of anode overpotential during start-up process of a high temperature proton exchange membrane fuel cell[J]. Electrochimica Acta, 2015, 176: 965-975. |
44 | BANDLAMUDI V, BUJLO P, SITA C, et al. Study on electrode carbon corrosion of high temperature proton exchange membrane fuel cell[J]. Materials Today: Proceedings, 2018, 5(4): 10602-10610. |
45 | REISER C A, BREGOLI L, PATTERSON T W, et al. A reverse-current decay mechanism for fuel cells[J]. Electrochemical and Solid-State Letters, 2005, 8(6): A273-A276. |
46 | SHEN Q, HOU M, LIANG D, et al. Study on the processes of start-up and shutdown in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 189(2): 1114-1119. |
47 | ISHIGAMI Y, TAKADA K, YANO H, et al. Corrosion of carbon supports at cathode during hydrogen/air replacement at anode studied by visualization of oxygen partial pressures in a PEFC—start-up/shut-down simulation[J]. Journal of Power Sources, 2011, 196(6): 3003-3008. |
48 | ENGL T, GUBLER L, SCHMIDT T J. Fuel electrode carbon corrosion in high temperature polymer electrolyte fuel cells-crucial or irrelevant?[J]. Energy Technology, 2016, 4(1): 65-74. |
49 | SCHWäMMLEIN J N, RHEINLäNDER P J, CHEN Y, et al. Anode aging during PEMFC start-up and shut-down: H2-air fronts vs voltage cycles[J]. Journal of the Electrochemical Society, 2018, 165(16): F1312-F1322. |
50 | SøNDERGAARD T, CLEEMANN L N, ZHONG L, et al. Catalyst degradation under potential cycling as an accelerated stress test for PBI-based high-temperature PEM fuel cells—effect of humidification[J]. Electrocatalysis, 2017, 9(3): 302-313. |
51 | BANDLAMUDI V, BUJLO P, LINKOV V, et al. The effect of potential cycling on high temperature PEM fuel cell with different flow field designs[J]. Fuel Cells, 2019, 19(3): 231-243. |
52 | REIMER U, SCHUMACHER B, LEHNERT W. Accelerated degradation of high-temperature polymer electrolyte fuel cells: discussion and empirical modeling[J]. Journal of the Electrochemical Society, 2014, 162(1): F153-F164. |
53 | SCHONVOGEL D, RASTEDT M, WAGNER P, et al. Impact of accelerated stress tests on high temperature PEMFC degradation[J]. Fuel Cells, 2016, 16(4): 480-489. |
54 | RASTEDT M, BüSSELMANN J, TULLIUS V, et al. Rapid and flash tests: indicator for quality of HT-PEM fuel cells batches?[J]. Fuel Cells, 2018, 18(2): 113-122. |
55 | BüSSELMANN J, RASTEDT M, TULLIUS V, et al. Evaluation of HT-PEM MEAs: load cycling versus start/stop cycling[J]. International Journal of Hydrogen Energy, 2019, 44(35): 19384-19394. |
56 | BEVILACQUA N, GEORGE M G, GALBIATI S, et al. Phosphoric acid invasion in high temperature PEM fuel cell gas diffusion layers[J]. Electrochimica Acta, 2017, 257: 89-98. |
57 | HALTER J, MARONE F, SCHMIDT T J, et al. Breaking through the cracks: On the mechanism of phosphoric acid migration in high temperature polymer electrolyte fuel cells[J]. Journal of The Electrochemical Society, 2018, 165(14): F1176-F1183. |
58 | EBERHARDT S H, TOULEC M, MARONE F, et al. Dynamic operation of HT-PEFC: In-operando imaging of phosphoric acid profiles and (re)distribution[J]. Journal of the Electrochemical Society, 2015, 162(3): F310-F316. |
59 | RASTEDT M, TULLIUS V, BUSSELMANN J, et al. Evaluation of HT-PEM fuel cells via load cycling at high current densities[J]. ECS Transactions, 2017, 80(8): 3-17. |
60 | LI Q, JENSEN J O, SAVINELL R F, et al. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells[J]. Progress in Polymer Science, 2009, 34(5): 449-477. |
61 | PARK J, WANG L, ADVANI S G, et al. Mechanical stability of H3PO4-doped PBI/hydrophilic-pretreated PTFE membranes for high temperature PEMFCs[J]. Electrochimica Acta, 2014, 120: 30-38. |
62 | ZHOU F, ANDREASEN S J, KæR S K. Experimental study of cell reversal of a high temperature polymer electrolyte membrane fuel cell caused by H2 starvation[J]. International Journal of Hydrogen Energy, 2015, 40(20): 6672-6680. |
63 | ORFANIDI A, DALETOU M K, SYGELLOU L, et al. The role of phosphoric acid in the anodic electrocatalytic layer in high temperature PEM fuel cells[J]. Journal of Applied Electrochemistry, 2013, 43(11): 1101-1116. |
64 | YU Y, YUAN X-Z, LI H, et al. Current mapping of a proton exchange membrane fuel cell with a segmented current collector during the gas starvation and shutdown processes[J]. International Journal of Hydrogen Energy, 2012, 37(20): 15288-15300. |
65 | ZHANG G, SHEN S, GUO L, et al. Dynamic characteristics of local current densities and temperatures in proton exchange membrane fuel cells during reactant starvations[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1884-1892. |
66 | ZHOU F, ANDREASEN S J, KæR S K, et al. Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition[J]. International Journal of Hydrogen Energy, 2015, 40(6): 2833-2839. |
67 | MITSUDA K, MURAHASHI T. Air and fuel starvation of phosphoric acid fuel cells—A study using a single cell with multi-reference electrodes[J]. Journal of Applied Electrochemistry, 1991, 21: 524-530. |
68 | YEZERSKA K, DUSHINA A, LIU F, et al. Characterization methodology for anode starvation in HT-PEM fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(33): 18330-18339. |
69 | TANIGUCHI A, AKITA T, YASUDA K, et al. Analysis of degradation in PEMFC caused by cell reversal during air starvation[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2323-2329. |
70 | ALEGRE C, LOZANO A, MANSO Á P, et al. Single cell induced starvation in a high temperature proton exchange membrane fuel cell stack[J]. Applied Energy, 2019, 250: 1176-1189. |
71 | FREUNBERGER S A, SCHNEIDER I A, P-C SUI, et al. Cell interaction phenomena in polymer electrolyte fuel cell stacks[J]. Journal of The Electrochemical Society, 2008, 155(7): B704-B714. |
72 | LIU Z, YANG L, MAO Z, et al. Behavior of PEMFC in starvation[J]. Journal of Power Sources, 2006, 157(1): 166-176. |
73 | JIMéNEZ S, SOLER J, VALENZUELA R X, et al. Assessment of the performance of a PEMFC in the presence of CO[J]. Journal of Power Sources, 2005, 151: 69-73. |
74 | GU T, LEE W K, ZEE J W V. Quantifying the ‘reverse water gas shift’ reaction inside a PEM fuel cell[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 43-50. |
75 | MOHTADI R, LEE W K, VAN ZEE J W. The effect of temperature on the adsorption rate of hydrogen sulfide on Pt anodes in a PEMFC[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 37-42. |
76 | TSUSHIMA S, KANEKO K, MORIOKA H, et al. Influence of SO2 concentration and relative humidity on electrode poisoning in polymer electrolyte membrane fuel cells[J]. Journal of Thermal Science and Technology, 2012, 7(4): 619-632. |
77 | ZHAI Y, BETHUNE K, BENDER G, et al. Analysis of the SO2 contamination effect on the oxygen reduction reaction in PEMFCs by electrochemical impedance spectroscopy[J]. Journal of The Electrochemical Society, 2012, 159(5): B524-B530. |
78 | URIBE F A, GOTTESFELD S, ZAWODZINSKI T A. Effect of ammonia as potential fuel impurity on proton exchange membrane fuel cell performance[J]. Journal of the Electrochemical Society, 2002, 149(3): A293-A296. |
79 | GARSANY Y, GOULD B D, BATURINA O A, et al. Comparison of the sulfur poisoning of PBI and Nafion PEMFC cathodes[J]. Electrochemical and Solid-State Letters, 2009, 12(9): B138-B140. |
80 | MODESTOV A D, TARASEVICH M R, FILIMONOV V Y, et al. CO tolerance and CO oxidation at Pt and Pt-Ru anode catalysts in fuel cell with polybenzimidazole-H3PO4 membrane[J]. Electrochimica Acta, 2010, 55(20): 6073-6080. |
81 | BOAVENTURA M, SANDER H, FRIEDRICH K A, et al. The influence of CO on the current density distribution of high temperature polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2011, 56(25): 9467-9475. |
82 | SCHMIDT T J, BAURMEISTER J. Development status of high temperature PBI based membrane electrode assemblies[J]. ECS Transactions, 2008, 16(2): 263-270. |
83 | ANDREASEN S J, MOSBÆK R, VANG J R, et al. EIS characterization of the poisoning effects of CO and CO2 on a PBI based HT-PEM fuel cell[C]//ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology, Brooklyn, New York: ASME, 2010: 10. |
84 | ZHOU F, ANDREASEN S J, KÆR S K, et al. Experimental investigation of carbon monoxide poisoning effect on a PBI/H3PO4 high temperature polymer electrolyte membrane fuel cell: influence of anode humidification and carbon dioxide[J]. International Journal of Hydrogen Energy, 2015, 40(43): 14932-14941. |
85 | ABDUL RASHEED R K, CHAN S H. Transient carbon monoxide poisoning kinetics during warm-up period of a high-temperature PEMFC – physical model and parametric study[J]. Applied Energy, 2015, 140: 44-51. |
86 | OH K, JEONG G, CHO E, et al. A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21915-21926. |
87 | MISZ U, TALKE A, HEINZEL A, et al. Sensitivity analyses on the impact of air contaminants on automotive fuel cells[J]. Fuel Cells, 2016, 16(4): 444-462. |
88 | ZHAI Y, BENDER G, BETHUNE K, et al. Influence of cell temperature on sulfur dioxide contamination in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2014, 247: 40-48. |
89 | TSUSHIMA S, KANEKO K, HIRAI S. Two-stage degradation of PEMFC performance due to sulfur dioxide contamination[J]. ECS Transactions, 2010, 33(1): 1645-1652. |
90 | PUNYAWUDHO K, MONNIER J R, VAN ZEE J W. SO2 adsorption on carbon-supported Pt electrocatalysts[J]. Langmuir, 2011, 27(6): 3138-3143. |
91 | MISZ U, HUGO A. Evaluierung der kathodenseitigen schädigungsmechanismen durch partikuläre und gasförmige luftschadstoffe mit hilfe von elektrochemischen messmethoden zur standzeiterhöhung von PEM-brennstoffzellen[R]. 2012. |
92 | JING F, HOU M, SHI W, et al. The effect of ambient contamination on PEMFC performance[J]. Journal of Power Sources, 2007, 166(1): 172-176. |
93 | CHEN M, DU C, ZHANG J, et al. Effect, mechanism and recovery of nitrogen oxides poisoning on oxygen reduction reaction at Pt/C catalysts[J]. Journal of Power Sources, 2011, 196(2): 620-626. |
94 | ST-PIERRE J, JIA N, RAHMANI R. PEMFC contamination model: competitive adsorption demonstrated with NO2[J]. Journal of the Electrochemical Society, 2008, 155(4): B315-B320. |
95 | YANG D, MA J, XU L, et al. The effect of nitrogen oxides in air on the performance of proton exchange membrane fuel cell[J]. Electrochimica Acta, 2006, 51(19): 4039-4044. |
96 | HONGSIRIKARN K, GOODWIN J G, GREENWAY S, et al. Influence of ammonia on the conductivity of Nafion membranes[J]. Journal of Power Sources, 2010, 195(1): 30-38. |
97 | HALSEID R, HEINEN M, JUSYS Z, et al. The effect of ammonium ions on oxygen reduction and hydrogen peroxide formation on polycrystalline Pt electrodes[J]. Journal of Power Sources, 2008, 176(2): 435-443. |
98 | SZYMANSKI S T, GRUVER G A, KATZ M, et al. The effect of ammonia on hydrogen-air phosphoric-acid fuel-cell performance[J]. Journal of the Electrochemical Society, 1980, 127(7): 1440-1444. |
99 | ISORNA LLERENA F, DE LAS HERAS JIMéNEZ A, LóPEZ GONZáLEZ E, et al. Effects of ammonia impurities on the hydrogen flow in high and low temperature polymer electrolyte fuel cells[J]. Fuel Cells, 2019, 19(6): 651-662. |
100 | ALI S T, LI Q, PAN C, et al. Effect of chloride impurities on the performance and durability of polybenzimidazole-based high temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(2): 1628-1636. |
101 | LI N H, LIPKOWSKI J. Chronocoulometric studies of chloride adsorption at the Pt(111) electrode surface[J]. Journal of Electroanalytical Chemistry, 2000, 491(1/2): 95-102. |
102 | YADAV A P, NISHIKATA A, TSURU T. Effect of halogen ions on platinum dissolution under potential cycling in 0.5M H2SO4 solution[J]. Electrochimica Acta, 2007, 52(26): 7444-7452. |
103 | SCHMIDT T J, PAULUS U A, GASTEIGER H A, et al. The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions[J]. Journal of Electroanalytical Chemistry, 2001, 508 (1/2): 41-47. |
104 | SIMON ARAYA S, JUHL ANDREASEN S, VENSTRUP NIELSEN H, et al. Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18231-18242. |
105 | JEPPESEN C, POLVERINO P, ANDREASEN S J, et al. Impedance characterization of high temperature proton exchange membrane fuel cell stack under the influence of carbon monoxide and methanol vapor[J]. International Journal of Hydrogen Energy, 2017, 42(34): 21901-21912. |
106 | AILI D, VASSILIEV A, JENSEN J O, et al. Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes[J]. Journal of Power Sources, 2015, 279: 517-521. |
107 | THOMAS S, VANG J R, ARAYA S S, et al. Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions[J]. Applied Energy, 2017, 192: 422-436. |
108 | SIMON ARAYA S, GRIGORAS I F, ZHOU F, et al. Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate[J]. International Journal of Hydrogen Energy, 2014, 39(32): 18343-18350. |
109 | ORFANIDI A, DALETOU M K, NEOPHYTIDES S G. Mitigation strategy towards stabilizing the electrochemical interface under high CO and H2O containing reformate gas feed[J]. Electrochimica Acta, 2017, 233: 218-228. |
110 | ARLT T, MAIER W, TöTZKE C, et al. Synchrotron X-ray radioscopic in situ study of high-temperature polymer electrolyte fuel cells - effect of operation conditions on structure of membrane[J]. Journal of Power Sources, 2014, 246: 290-298. |
111 | GARCHE J. Encyclopedia of electrochemical power sources[M]. DYER C, MOSELEY P, OGUMI Z, et al. 1st ed.: Elsevier, 2009. |
112 | CLEEMANN L N, BUAZAR F, LI Q, et al. Catalyst degradation in high temperature proton exchange membrane fuel cells based on acid doped polybenzimidazole membranes[J]. Fuel Cells, 2013, 13(5): 822-831. |
113 | ENGL T, GUBLER L, SCHMIDT T J. Think different! Carbon corrosion mitigation strategy in high temperature PEFC: a rapid aging study[J]. Journal of the Electrochemical Society, 2015, 162(3): F291-F297. |
114 | FERREIRA-APARICIO P, CHAPARRO A M, FOLGADO M A, et al. Degradation study by start-up/shut-down cycling of superhydrophobic electrosprayed catalyst layers using a localized reference electrode technique[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10626-10636. |
115 | LEE S Y, CHO E, LEE J H, et al. Effects of purging on the degradation of PEMFCs operating with repetitive on/off cycles[J]. Journal of the Electrochemical Society, 2007, 154(2): B194-B200. |
116 | GU W, CARTER R N., YU P, et al. Start/stop and local H2 starvation mechanisms of carbon corrosion: Model vs. Experiment[J]. ECS Transactions, 2007, 11(1): 963-973. |
117 | OYARCE A, ZAKRISSON E, IVITY M, et al. Comparing shut-down strategies for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2014, 254: 232-240. |
118 | THOMAS S, ARAYA S S, FRENSCH S H, et al. Hydrogen mass transport resistance changes in a high temperature polymer membrane fuel cell as a function of current density and acid doping[J]. Electrochimica Acta, 2019, 317(10): 521-527. |
119 | PHILLIPS A, ULSH M, NEYERLIN K C, et al. Impacts of electrode coating irregularities on polymer electrolyte membrane fuel cell lifetime using quasi in-situ infrared thermography and accelerated stress testing[J]. International Journal of Hydrogen Energy, 2018, 43(12): 6390-6399. |
120 | SINGDEO D, DEY T, GHOSH P C. Modelling of start-up time for high temperature polymer electrolyte fuel cells[J]. Energy, 2011, 36(10): 6081-6089. |
121 | ANDREASEN S J, KÆR S K. Modelling and evaluation of heating strategies for high temperature polymer electrolyte membrane fuel cell stacks[J]. International Journal of Hydrogen Energy, 2008, 33(17): 4655-4664. |
122 | WANG H, HOU J, YU H, et al. Effects of reverse voltage and subzero startup on the membrane electrode assembly of a PEMFC[J]. Journal of Power Sources, 2007, 165(1): 287-292. |
123 | KURZ T, KüFNER F, GERTEISEN D. Heating of low and high temperature PEM fuel cells with alternating current[J]. Fuel Cells, 2018, 18(3): 326-334. |
124 | SONG T-W, K-H CHOI, KIM J-R, et al. Pumpless thermal management of water-cooled high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2011, 196(10): 4671-4679. |
125 | REDDY E H, MONDER D S, JAYANTI S. Parametric study of an external coolant system for a high temperature polymer electrolyte membrane fuel cell[J]. Applied Thermal Engineering, 2013, 58(1/2): 155-164. |
126 | SUPRA J, JANßEN H, LEHNERT W, et al. Design and experimental investigation of a heat pipe supported external cooling system for HT-PEFC stacks[J]. Journal of Fuel Cell Science and Technology, 2013, 10(5): 051002. |
127 | ALIZADEH E, RAHGOSHAY S M, RAHIMI-ESBO M, et al. A novel cooling flow field design for polymer electrolyte membrane fuel cell stack[J]. International Journal of Hydrogen Energy, 2016, 41(20): 8525-8532. |
128 | REDDY E H, JAYANTI S, MONDER D S. Thermal management of high temperature polymer electrolyte membrane fuel cell stacks in the power range of 1-10kWe[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20127-20138. |
129 | ZHANG C, YU T, YI J, et al. Investigation of heating and cooling in a stand-alone high temperature PEM fuel cell system[J]. Energy Conversion and Management, 2016, 129: 36-42. |
130 | HUANG H, ZHOU Y, DENG H, et al. Modeling of high temperature proton exchange membrane fuel cell start-up processes[J]. International Journal of Hydrogen Energy, 2016, 41: 3113-3127. |
131 | ABDUL RASHEED R K, ZHANG C, CHAN S H. Numerical analysis of high-temperature proton exchange membrane fuel cells during start-up by inlet gas heating and applied voltage[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10390-10406. |
132 | C-J TSENG, Y-J HEUSH, C-J CHIANG, et al. Application of metal foams to high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16196-16204. |
133 | LI S, SUNDéN B. Three-dimensional modeling and investigation of high temperature proton exchange membrane fuel cells with metal foams as flow distributor[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27323-27333. |
134 | SINGDEO D, DEY T, GAIKWAD S, et al. A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell[J]. Applied Energy, 2017, 195: 13-22. |
135 | MITSUDA K, MURAHASHI T. Characterization of gas flow configurations for phosphoric acid fuel cells[J]. Journal of Applied Electrochemistry, 1991, 21: 395-401. |
136 | JI F, YANG L, LI Y, et al. An experimental method to measure flow distribution in the cathode of high-temperature polymer electrolyte membrane fuel cells stack[J]. Energy Technology, 2019, 7(11): 1900416. |
137 | FURUSAWA K, NAGOSHI K, TANIMOTO S. Control method to reduce degradation in fuel cell system at start-up[J]. Honda R&D Technical Review, 2012, 24(2): 82-88. |
138 | URIAN R C, GULLá A F, MUKERJEE S. Electrocatalysis of reformate tolerance in proton exchange membranes fuel cells: Part I[J]. Journal of Electroanalytical Chemistry, 2003, 554/555: 307-324. |
139 | ALCAIDE F, ÁLVAREZ G, TSIOUVARAS N, et al. Electrooxidation of H2/CO on carbon-supported PtRu-MoO nanoparticles for polymer electrolyte fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(22): 14590-14598. |
140 | EHTESHAMI S M M, CHAN S H. A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membarane fuel cells[J]. Electrochimica Acta, 2013, 93: 334-345. |
141 | HENGGE K, HEINZL C, PERCHTHALER M, et al. Unraveling micro-and nanoscale degradation processes during operation of high-temperature polymer-electrolyte-membrane fuel cells[J]. Journal of Power Sources, 2017, 364: 437-448. |
142 | URIBE F A., VALERIO J A., GARZON F, et al. PEMFC reconfigured anodes for enhancing CO tolerance with air bleed[J]. Electrochemical and Solid-State Letters, 2004, 7(10): A376-A379. |
143 | GOTTESFELD S, PAFFORD J. A new approach to the problem of carbon-monoxide poisoning in fuel-cells operating at low-temperatures[J]. Journal of the Electrochemical Society, 1988, 135(10): 2651-2652. |
144 | KAKATI B K, KUCERNAK A R J, FAHY K F. Using corrosion-like processes to remove poisons from electrocatalysts: a viable strategy to chemically regenerate irreversibly poisoned polymer electrolyte fuel cells[J]. Electrochimica Acta, 2016, 222: 888-897. |
145 | GOULD B D, BENDER G, BETHUNE K, et al. Operational performance recovery of SO2-contaminated proton exchange membrane fuel cells[J]. Journal of the Electrochemical Society, 2010, 157(11): B1569-B1577. |
146 | LOPES T, J-M SANSIñENA, MUKUNDAN R, et al. Diagnosing the effects of ammonia exposure on PEFC cathodes[J]. Journal of the Electrochemical Society, 2014, 161(6): F703-F709. |
147 | RAU M, CREMERS C, TüBKE J. Development of anodic materials for HT-PEMFCs with high tolerance to H2S[J]. International Journal of Hydrogen Energy, 2015, 40(15): 5439-5443. |
148 | EBERHARDT S H, LOCHNER T, BüCHI F N, et al. Correlating electrolyte inventory and lifetime of HT-PEFC by accelerated stress testing[J]. Journal of the Electrochemical Society, 2015, 162(12): F1367-F1372. |
149 | JUNG G-B, CHEN H-H, YAN W-M. Performance degradation studies on an poly 2,5-benzimidazole high-temperature proton exchange membrane fuel cell using an accelerated degradation technique[J]. Journal of Power Sources, 2014, 247: 354-359. |
150 | TACCANI R, CHINESE T, BOARO M. Effect of accelerated ageing tests on PBI htpem fuel cells performance degradation[J]. International Journal of Hydrogen Energy, 2017, 42(3): 1875-1883. |
151 | LI Q, LIU J, CHEN W. Review and prospect of remaining useful life prediction methods for proton exchange membrane fuel cell[J]. Proceedings of the Chinese Society of Electrical Engineering, 2019, 39(8): 2365-2375. |
152 | CHALISE S, STERNHAGEN J, HANSEN T M, et al. Energy management of remote microgrids considering battery lifetime[J]. The Electricity Journal, 2016, 29(6): 1-10. |
153 | MARANO V, ONORI S, GUEZENNEC Y, et al. Lithium-ion batteries life estimation for plug-in hybrid electric vehicles[C]//2009 IEEE Vehicle Power and Propulsion Conference. 2009: 536-543. |
154 | C-Y LEE, WENG F-B, S-M CHUANG, et al. Flexible five-in-one micro sensor for in-situ diagnosis of high-temperature proton exchange membrane fuel cell stack[J]. International Journal of Hydrogen Energy, 2015, 40(45): 15679-15689. |
[1] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[4] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[5] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[6] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[7] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[8] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[11] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[12] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[13] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[14] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[15] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |