1 | 修志龙, 郭峰, 梁志霞, 等. 第二代生物柴油及其生物炼制关键技术[J]. 化工进展, 2010, 29(S1): 58-63. | 1 | XIU Z L, GUO F, LIANG Z X, et, al. Key technologies of second-generation biodiesel and its biorefinery[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 58-63. | 2 | AHMAD T, DANISH M, KALE P, et al. Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations[J]. Renewable Energy, 2019, 139: 1272-1280. | 3 | TABATABAEI M, AGHBASHLO M, DEHHAGHI M, et al. Reactor technologies for biodiesel production and processing: a review[J]. Progress in Energy and Combustion Science, 2019, 74: 239-303. | 4 | VERAS S, ROJAS P, FLORENCIO L, et al. Production of 1,3-propanediol from pure and crude glycerol using a UASB reactor with attached biomass in silicone support[J]. Bioresour. Technol., 2019, 279: 140-148. | 5 | 熊犍, 宋炜, 叶君. 降低生物柴油生产成本的研究进展[J]. 化工进展, 2007, 26(6): 774-777. | 5 | XIONG J, SONG Y, YE J. Research development in reducing production cost of biodiesel[J]. Chemical Industry and Engineering Progress, 2007, 26(6): 774-777. | 6 | KUMAR L R, YELLAPU S K, TYAGI R D, et al. A review on variation in crude glycerol composition, bio-valorization of crude and purified glycerol as carbon source for lipid production[J]. Bioresource Technology, 2019, 293: 122155. | 7 | SUN Y, ZHENG Y, WANG X, et al. Fermentation performance and mechanism of a novel microbial consortium DUT08 for 1,3-propandiol production from biodiesel-derived crude glycerol under non-strictly anaerobic conditions[J]. Process Biochemistry, 2019, 83: 27-34. | 8 | CHOL C G, DHABHAI R, DALAI A K, et al. Purification of crude glycerol derived from biodiesel production process: experimental studies and techno-economic analyses[J]. Fuel Processing Technology, 2018, 178: 78-87. | 9 | ANITHA M, KAMARUDIN S K, KOFLI N T. The potential of glycerol as a value-added commodity[J]. Chemical Engineering Journal, 2016, 295: 119-130. | 10 | YANG X, CHOI H S, LEE J H, et al. Improved production of 1,3-propanediol from biodiesel-derived crude glycerol by Klebsiella pneumoniae in fed-batch fermentation[J]. Chemical Engineering Journal, 2018, 349: 25-36. | 11 | ZAHEDI S, SOLERA R, GARCíA-MORALES J L, et al. Effect of the addition of glycerol on hydrogen production from industrial municipal solid waste[J]. Fuel, 2016, 180: 343-347. | 12 | SZYMANOWSKA-POWA?OWSKA D. 1,3-Propanediol production from crude glycerol by Clostridium butyricum DSP1 in repeated batch[J]. Electronic Journal of Biotechnology, 2014, 17(6): 322-328. | 13 | PARATE R, MANE R, DHARNE M, et al. Mixed bacterial culture mediated direct conversion of bio-glycerol to diols[J]. Bioresource Technology, 2018, 250: 86-93. | 14 | 刘海军, 徐友海, 张代佳, 等. 两步发酵法生产1,3-丙二醇的研究[J]. 食品与发酵工业, 2006(2): 4-7. | 14 | LIU H J, XU Y H, ZHANG D J, et al. Investigation of two successive bioprocesses for the microbial production of 1,3-propanediol[J]. Food and Fermentation Industries, 2006(2): 4-7. | 15 | SILVA G P DA, MACK M, CONTIERO J. Glycerol: a promising and abundant carbon source for industrial microbiology[J]. Biotechnology Advances, 2009, 27(1): 30-39. | 16 | 朱春杰, 方柏山. 微生物转化法生产1,3-丙二醇的研究进展[J]. 华侨大学学报(自然科学版), 2009, 30(5): 481-486. | 16 | ZHU C J, FANG B S. Progress on the production of 1,3-propanediol by microbial conversion[J]. Journal of Huaqiao University (Natural Science), 2009, 30(5): 481-486. | 17 | VIVEK N, CHRISTOPHER M, KUMAR M K, et al. Pentose rich acid pretreated liquor as co-substrate for 1,3-propanediol production[J]. Renewable Energy, 2018, 129: 794-799. | 18 | VIVEK N, PANDEY A, BINOD P. Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3[J]. Bioresource Technology, 2016, 213: 222-230. | 19 | 熊玮. 丁酸梭菌1,3-丙二醇的过程模型化和优化[D]. 厦门: 厦门大学, 2012. | 19 | XIONG W. Process modeling and optimization of Clostridium butyricum 1,3-propanediol[D]. Xiamen: Xiamen University, 2012. | 20 | SILVA F M S, OLIVEIRA L B, MAHLER C F, et al. Hydrogen production through anaerobic co-digestion of food waste and crude glycerol at mesophilic conditions[J]. International Journal of Hydrogen Energy, 2017, 42(36): 22720-22729. | 21 | PACHAPUR V L, SARMA S J, BRAR S K, et al. Surfactant mediated enhanced glycerol uptake and hydrogen production from biodiesel waste using co-culture of Enterobacter aerogenes and Clostridium butyricum[J]. Renewable Energy, 2016, 95: 542-551. | 22 | FABER M D O, FERREIRA-LEIT?O V S. Optimization of biohydrogen yield produced by bacterial consortia using residual glycerin from biodiesel production[J]. Bioresource Technology, 2016, 219: 365-370. | 23 | POTT R W M, HOWE C J, DENNIS J S. Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris: comparison with organic acids and the identification of inhibitory compounds[J]. Bioresource Technology, 2013, 130: 725-730. | 24 | ZHANG D, XIAO N, MAHBUBANI K T, et al. Bioprocess modelling of biohydrogen production by Rhodopseudomonas palustris: model development and effects of operating conditions on hydrogen yield and glycerol conversion efficiency[J]. Chemical Engineering Science, 2015, 130: 68-78. | 25 | SENGMEE D, CHEIRSILP B, SUKSAROGE T T, et al. Biophotolysis-based hydrogen and lipid production by oleaginous microalgae using crude glycerol as exogenous carbon source[J]. International Journal of Hydrogen Energy, 2017, 42(4): 1970-1976. | 26 | 吴梦佳. 污泥混合菌种暗发酵与光发酵联合制氢[D]. 天津: 天津大学, 2014. | 26 | WU M J. Bio-hydrogen production from a combined process of dark and photo fermentation by mixed bacteria from anaerobic sludge[D]. Tianjin: Tianjin University, 2014. | 27 | CHOOKAEW T, O-THONG S, PRASERTSAN P. Biohydrogen production from crude glycerol by two stage of dark and photo fermentation[J]. International Journal of Hydrogen Energy, 2015, 40(24): 7433-7438. | 28 | SARMA S J, BRAR S K, LE BIHAN Y, et al. Bio-hydrogen production by biodiesel-derived crude glycerol bioconversion: a techno-economic evaluation[J]. Bioprocess and Biosystems Engineering, 2013, 36(1): 1-10. | 29 | LI J, LIU R, CHANG G, et al. A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources[J]. Bioresource Technology, 2015, 177: 51-57. | 30 | LI X, LIU J, CHEN G, et al. Extraction and purification of eicosapentaenoic acid and docosahexaenoic acid from microalgae: a critical review[J]. Algal Research, 2019, 43: 101619. | 31 | LUNG Y, TAN C H, SHOW P L, et al. Docosahexaenoic acid production from crude glycerol by Schizochytrium limacinum SR21[J]. Clean Technologies and Environmental Policy, 2016, 18(7): 2209-2216. | 32 | CHEN W, ZHOU P, ZHANG M, et al. Transcriptome analysis reveals that up-regulation of the fatty acid synthase gene promotes the accumulation of docosahexaenoic acid in Schizochytrium sp. S056 when glycerol is used[J]. Algal Research, 2016, 15: 83-92. | 33 | HEJNA A, KIRPLUKS M, KOSMELA P, et al. The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams[J]. Industrial Crops and Products, 2017, 95: 113-125. | 34 | GóMEZ E F, LUO X, LI C, et al. Biodegradability of crude glycerol-based polyurethane foams during composting, anaerobic digestion and soil incubation[J]. Polymer Degradation and Stability, 2014, 102: 195-203. | 35 | KOSMELA P, HEJNA A, FORMELA K, et al. The study on application of biopolyols obtained by cellulose biomass liquefaction performed with crude glycerol for the synthesis of rigid polyurethane foams[J]. Journal of Polymers and the Environment, 2018, 26(6): 2546-2554. | 36 | GAMA N V, SOARES B, FREIRE C S, et al. Effect of unrefined crude glycerol composition on the properties of polyurethane foams[J]. Journal of Cellular Plastics, 2017, 54(3): 633-649. | 37 | HU S, LI Y. Polyols and polyurethane foams from base-catalyzed liquefaction of lignocellulosic biomass by crude glycerol: effects of crude glycerol impurities[J]. Industrial Crops and Products, 2014, 57: 188-194. | 38 | 戚小各, 何玉远, 常春, 等. 基于生物柴油副产物粗甘油的聚氨酯硬泡的制备[J]. 聚氨酯工业, 2018, 33(1): 27-30. | 38 | QI X G, HE Y Y, CHANG C, et al. Preparation of bio-based polyurethane foam based on crude glycerol from biodiesel[J]. Polyurethane Industry, 2018, 33(1): 27-30. | 39 | QI X, ZHANG Y, CHANG C, et al. Thermal, mechanical, and morphological properties of rigid crude glycerol‐based polyurethane foams reinforced with nanoclay and microcrystalline cellulose[J]. European Journal of Lipid Science and Technology, 2018, 120(5): 1700413. | 40 | 刘利威, 常春, 戚小各, 等. 粗甘油生物基聚氨酯泡沫的改性研究[J]. 高校化学工程学报, 2019, 33(2): 469-474. | 40 | LIU L W, CHANG C, QI X G, et al. Modification of crude glycerol bio-based polyurethane foams[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(2): 469-474. | 41 | JUTRZENKA T P, DEUTER I, DATTA J. Cast polyurethanes obtained from reactive recovered polyol intermediates via crude glycerine decomposition process[J]. Reactive and Functional Polymers, 2017, 119: 20-25. | 42 | SHEN L, YIN H, WANG A, et al. Liquid phase dehydration of glycerol to acrolein catalyzed by silicotungstic, phosphotungstic, and phosphomolybdic acids[J]. Chemical Engineering Journal, 2012, 180: 277-283. | 43 | MA T, DING J, SHAO R, et al. Dehydration of glycerol to acrolein over Wells-Dawson and Keggin type phosphotungstic acids supported on MCM-41 catalysts[J]. Chemical Engineering Journal, 2017, 316: 797-806. | 44 | KONAKA A, TAGO T, YOSHIKAWA T, et al. Conversion of biodiesel-derived crude glycerol into useful chemicals over a zirconia-iron oxide catalyst[J]. Industrial & Engineering Chemistry Research, 2013, 52(44): 15509-15515. | 45 | LIU R, LYU S, WANG T. Sustainable production of acrolein from biodiesel-derived crude glycerol over H3PW12O40 supported on Cs-modified SBA-15[J]. Journal of Industrial and Engineering Chemistry, 2016, 37: 354-360. | 46 | SERESHKI B R, BALAN S J, PATIENCE G S, et al. Reactive vaporization of crude glycerol in a fluidized bed reactor[J]. Industrial & Engineering Chemistry Research, 2010, 49(3): 1050-1056. | 47 | CHENG L, LIU L, YE X P. Acrolein production from crude glycerol in sub-and super-critical water[J]. Journal of the American Oil Chemists’ Society, 2013, 90(4): 601-610. | 48 | TALEBIAN-KIAKALAIEH A, AMIN N A S. Thermo-kinetic and diffusion studies of glycerol dehydration to acrolein using HSiW-γ-Al2O3 supported ZrO2 solid acid catalyst[J]. Renewable Energy, 2017, 114: 794-804. | 49 | ZHANG E, ZHAI W, LUO Y, et al. Acclimatization of microbial consortia to alkaline conditions and enhanced electricity generation[J]. Bioresource Technology, 2016, 211: 736-742. | 50 | RAGO L, BAEZA J A, GUISASOLA A. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions[J]. Bioelectrochemistry, 2016, 109: 57-62. | 51 | MONTPART N, RAGO L, BAEZA J A, et al. Hydrogen production in single chamber microbial electrolysis cells with different complex substrates[J]. Water Research, 2015, 68: 601-615. | 52 | ZHANG Z, XIN L, QI J, et al. Supported Pt, Pd and Au nanoparticle anode catalysts for anion-exchange membrane fuel cells with glycerol and crude glycerol fuels[J]. Applied Catalysis B: Environmental, 2013, 136/137: 29-39. | 53 | MAYA-CORNEJO J, GUERRA-BALCáZAR M, ARJONA N, et al. Electrooxidation of crude glycerol as waste from biodiesel in a nanofluidic fuel cell using Cu@Pd/C and Cu@Pt/C[J]. Fuel, 2016, 183: 195-205. | 54 | BADIA-FABREGAT M, RAGO L, BAEZA J A, et al. Hydrogen production from crude glycerol in an alkaline microbial electrolysis cell[J]. International Journal of Hydrogen Energy, 2019, 44(32): 17204-17213. |
|