1 |
BANERJEE A , SHARMA R , BANERJEE U C . The nitrile-degrading enzymes: current status and future prospects [J]. Applied Microbiology and Biotechnology, 2002, 60: 33-44.
|
2 |
BHALLA T C , KUMAR V , THAKUR N , et al . Nitrile metabolizing enzymes in biocatalysis and biotransformation[J]. Applied Biochemistry and Biotechnology, 2018, 4: 1-22.
|
3 |
GONG J S , SHI J S , LU Z M , et al . Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insights and promises[J]. Critical Reviews in Biotechnology, 2017, 37(1): 69-81.
|
4 |
SCHMID A , DORDICK J ,S, HAUER B , et al . Industrial biocatalysis today and tomorrow[J]. Nature, 2001, 409:258-266.
|
5 |
MARTINKOVA L , KREN V . Biocatalytic production of mandelic acid and analogues: a review and comparison with chemical processes[J]. Applied Microbiology and Biotechnology, 2018, 102: 3893-3900.
|
6 |
LIU Z Q , LU M M , ZHANG X H , et al . Significant improvement of the nitrilase activity by semi-rational protein engineering and its application in the production of iminodiacetic acid[J]. International Journal of Biological Macromolecules, 2018, 116:563-571.
|
7 |
DIAS J , REZENDE R , LINARD V . Bioconversion of nitriles by Candida guilliermondii CCT 7207 cells immobilized in barium alginate[J]. Applied Microbiology and Biotechnology, 2001, 56: 757-761.
|
8 |
LIU Z Q , ZHOU M , ZHANG X H , et al . Biosynthesis of iminodiacetic acid from iminodiacetonitrile by immobilized recombinant Escherichia coli harboring nitrilase[J]. Journal of Molecular Microbiology and Biotechnology, 2012, 22: 35-47.
|
9 |
MAKSIMOVA Y G , VASILYEV D M , OVECHKINA G V , et al . Transformation of 2- and 4-cyanopyridines by free and immobilized cells of nitrile-hydrolyzing bacteria[J]. Applied Biochemistry and Microbiology, 2013, 49: 347-351.
|
10 |
KABAIVANOVA L V , CHERNEV G E , SALVADO I M M , et al . Silica-carrageenan hybrids used for cell immobilization realizing high-temperature degradation of nitrile substrates[J]. Central European Journal of Chemistry, 2011, 9: 232-239.
|
11 |
GONG J S , LI H , LU Z M , et al . Engineering of a fungal nitrilase for improving catalytic activity and reducing by-product formation in the absence of structural information[J]. Catalysis Science & Technology, 2016, 6: 4134-4141.
|
12 |
KAUL P , BANERJEE A , BANERJEE U C . Stereoselective nitrile hydrolysis by immobilized whole-cell biocatalyst[J]. Biomacromolecules, 2006, 7: 1536-1541.
|
13 |
KUMAR S , MOHAN U , KAMBLE A L , et al . Cross-linked enzyme aggregates of recombinant Pseudomonas putida nitrilase for enantioselective nitrile hydrolysis[J]. Bioresource Technology, 2010, 101: 6856-6858.
|
14 |
LIU Z Q , LU M M , ZHANG X H , , et al . Significant improvement of the nitrilase activity by semi-rational protein engineering and its application in the production of iminodiacetic acid[J]. International Journal of Biological Macromolecules, 2018, 116: 563-571.
|
15 |
ZHANG X H , LIU Z Q , XUE Y P , et al . Nitrilase-catalyzed conversion of (R,S)-mandelonitrile by immobilized recombinant Escherichia coli cells harboring nitrilase[J]. Biotechnology and Applied Biochemistry, 2016, 63: 479-489.
|
16 |
ZHANG Z J , PAN J , LI C X , et al . Efficient production of (R)-(−)-mandelic acid using glutaraldehyde cross-linked Escherichia coli cells expressing Alcaligenes sp. nitrilase[J]. Bioprocess and Biosystems Engineering, 2014, 37: 1241-1248.
|
17 |
ZHANG J F , LIU Z Q , ZHANG X H , et al . Biotransformation of iminodiacetonitrile to iminodiacetic acid by Alcaligenes faecalis cells immobilized in ACA-membrane liquid-core capsules[J]. Chemical Papers, 2014, 68: 53-64.
|