化工进展 ›› 2019, Vol. 38 ›› Issue (01): 538-544.DOI: 10.16085/j.issn.1000-6613.2018-1319
收稿日期:
2018-06-26
修回日期:
2018-09-27
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
谭天伟
作者简介:
王凯(1994—),男,博士研究生,研究方向为生物能源。E-mail:<email>Buctwk@163.com</email>。|谭天伟,中国工程院院士,博士生导师,研究方向为生物基化学品、生物能源和生物材料。E-mail:<email>twtan@mail.buct.edu.cn</email>。
Kai WANG(),Mingli HE,Meng WANG,Tianwei TAN()
Received:
2018-06-26
Revised:
2018-09-27
Online:
2019-01-05
Published:
2019-01-05
Contact:
Tianwei TAN
摘要:
温室气体积累而导致的全球性气候变化引起了人们的广泛重视,因此科学家通过不同的方法在CO2固定方面进行了诸多的探索与研究,例如化学转化、酶催化及微生物转化等。而微生物的多功能性使得其具有将生物质、生物废物和二氧化碳作为原料来生产生物燃料及化学品等物质的优点。本文对天然存在于微生物体内的、可以固定CO2的途径进行了一定总结,并主要阐述了利用生物法或生物电化学法等方法将二氧化碳绿色地转化为化学品或生物质能源的相关工作。另外,对以粮食为原料的第一代生物制造以及以非粮食的生物质为原料的第二代生物制造方法及效果进行了评价,同时提出了以CO2为原料的第三代绿色生物制造的概念。最后预测了在利用二氧化碳进行生物转化的未来发展中所需的关键技术与发展走势。
中图分类号:
王凯, 贺明丽, 王梦, 谭天伟. 以CO2为原料的绿色生物制造[J]. 化工进展, 2019, 38(01): 538-544.
Kai WANG, Mingli HE, Meng WANG, Tianwei TAN. Green biological manufacture with CO2 as raw material[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 538-544.
菌种 | 底物 | 产品 | 最适温度/℃ | 最适pH |
---|---|---|---|---|
伍氏乙酸杆菌 | H2/CO2,CO | 乙酸 | 30 | 6.8 |
长醋丝菌 | H2/CO2 | 乙酸,丁酸 | 30~33 | 7.8 |
食甲基丁酸杆菌 | H2/CO2,CO | 乙酸,乙醇 | 37 | 6 |
乙酸梭菌 | H2/CO2,CO | 乙酸 | 30 | 8.3 |
产乙醇梭状杆菌 | H2/CO2,CO | 乙酸,乙醇,2,3-丁二醇,乳酸 | 37 | 5.8~6.0 |
厌氧食气梭菌 | H2/CO2,CO | 乙酸,乙醇,丁酸盐,丁醇,乳酸 | 38 | 6.2 |
科斯卡塔梭菌 | H2/CO2,CO | 乙酸,乙醇 | 37 | 5.8~6.5 |
德雷克氏梭菌 | H2/CO2,CO | 乙酸,乙醇,丁酸 | 25~30 | 3.6~6.8 |
甲酸乙酸梭菌 | CO | 乙酸,甲酸 | 37 | — |
乙二醇梭菌 | H2/CO2 | 乙酸 | 37~40 | 7.0~7.5 |
杨氏梭菌 | H2/CO2,CO | 乙酸,乙醇, 2,3-丁二醇,乳酸 | 37 | 6 |
大梭菌 | H2/CO2 | 乙酸 | 30~32 | 7.0 |
拉氏梭菌 | H2/CO2 | 乙酸,乙醇, 2,3-丁二醇,乳酸 | 37 | 6.3 |
粪味梭菌 | H2/CO2,CO | 乙酸,乙醇,丁酸 | 37~40 | 5.4~7.5 |
淤泥真杆菌 | H2/CO2,CO | 乙酸,丁酸 | 38~39 | 7.0~7.2 |
普氏产醋杆菌 | H2/CO2,CO | 乙酸,丁酸 | 36~38 | 7.3 |
热带棒状穆尔氏菌 | H2/CO2,CO | 乙酸 | 55 | 6.5~6.8 |
表1 产乙酸菌总览[34]
菌种 | 底物 | 产品 | 最适温度/℃ | 最适pH |
---|---|---|---|---|
伍氏乙酸杆菌 | H2/CO2,CO | 乙酸 | 30 | 6.8 |
长醋丝菌 | H2/CO2 | 乙酸,丁酸 | 30~33 | 7.8 |
食甲基丁酸杆菌 | H2/CO2,CO | 乙酸,乙醇 | 37 | 6 |
乙酸梭菌 | H2/CO2,CO | 乙酸 | 30 | 8.3 |
产乙醇梭状杆菌 | H2/CO2,CO | 乙酸,乙醇,2,3-丁二醇,乳酸 | 37 | 5.8~6.0 |
厌氧食气梭菌 | H2/CO2,CO | 乙酸,乙醇,丁酸盐,丁醇,乳酸 | 38 | 6.2 |
科斯卡塔梭菌 | H2/CO2,CO | 乙酸,乙醇 | 37 | 5.8~6.5 |
德雷克氏梭菌 | H2/CO2,CO | 乙酸,乙醇,丁酸 | 25~30 | 3.6~6.8 |
甲酸乙酸梭菌 | CO | 乙酸,甲酸 | 37 | — |
乙二醇梭菌 | H2/CO2 | 乙酸 | 37~40 | 7.0~7.5 |
杨氏梭菌 | H2/CO2,CO | 乙酸,乙醇, 2,3-丁二醇,乳酸 | 37 | 6 |
大梭菌 | H2/CO2 | 乙酸 | 30~32 | 7.0 |
拉氏梭菌 | H2/CO2 | 乙酸,乙醇, 2,3-丁二醇,乳酸 | 37 | 6.3 |
粪味梭菌 | H2/CO2,CO | 乙酸,乙醇,丁酸 | 37~40 | 5.4~7.5 |
淤泥真杆菌 | H2/CO2,CO | 乙酸,丁酸 | 38~39 | 7.0~7.2 |
普氏产醋杆菌 | H2/CO2,CO | 乙酸,丁酸 | 36~38 | 7.3 |
热带棒状穆尔氏菌 | H2/CO2,CO | 乙酸 | 55 | 6.5~6.8 |
1 | CLOMBURG J M , CRUMBLEY A M , GONZALEZ R . Industrial biomanufacturing: the future of chemical production[J]. Science, 2017, 355(6320): 1-9. |
2 | DAMARTZIS T , ZABANIOTOU A . Thermochemical conversion of biomass to second generation biofuels through integrated process design—a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 366-378. |
3 | BIROL F . Key world energy statistics[R]. France: IEA Publications, 2017. |
4 | PETIE J R , JOUZEL J , RAYNAUD D , et al . Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica [J].Nature, 1999, 399: 429. |
5 | LIAO, J C, MI L , PONTRELLI S , et al . Fuelling the future: microbial engineering for the production of sustainable biofuels [J].Nature Rev. Microbiol. , 2016,14: 288-304 . |
6 | PACALA S , SOCOLOW R . Stabilization wedges: solving the climate problem for the next 50 years with current technologies[J]. Science, 2004, 305: 968-972. |
7 | O'NEILL B C , OPPENHEIMER M . Dangerous climate impacts and the kyoto protocol[J]. Science, 2002, 296(5575): 1971-1972. |
8 | HUGHES T P , BAIRD A H , BELLWOOD D R , et al . Climate change, human impacts, and the resilience of coral reefs[J]. Science , 2003, 301: 929-933 . |
9 | FOIT S R , VINKE I C , DE HAART L , et al . Power-to-syngas: an enabling technology for the transition of the energy system?[J]. Angew. Chem. Int. Ed., 2017, 56: 5402-5411 . |
10 | CHANGE I P O C . Climate change 2014 synthesis report[J]. Environmental Policy Collection, 2014, 27(2): 408. |
11 | MORIARTY P , HONNERY D . Assessing the climate mitigation potential of biomass[J]. AIMS Energy , 2016 , 5: 20-38. |
12 | SHEN Y . Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production[J].RSC Adv., 2014, 4: 49672-49722. |
13 | HAVLÍK P , SCHNEIDER U A , SCHMID E , et al . Global land-use implications of first and second generation biofuel targets[J]. Energy Policy, 2011, 39(10): 5690-5702. |
14 | SIMS R E , MABEE W , SADDLER J N , et al .An overview of second generation biofuel technologies[J]. Bioresour Technol. , 2010 ,101: 1570-1580. |
15 | POROSOFF M D , YAN B , CHEN J G . Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities[J]. Energy Environ. Sci., 2016, 9: 62-73. |
16 | WHITE J L , BARUCH M F , PANDER J E , et al . Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes[J]. Chem.Rev., 2015, 115: 12888-12935. |
17 | OLAH G A , GOEPPERT A , CZAUN M , et al . Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis[J]. J. Am. Chem. Soc., 2013,135: 648-650. |
18 | MEI Yang , LI Hailan , XIE Jin . Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco)[J]. Plant Physiology Communications, 2007, 78(1): 155-162. |
19 | TCHERKEZ G G , FARQUHAR G D , ANDREWS T J . Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized[J]. Proc. Natl. Acad. Sci., U S A, 2006, 103: 7246-7251. |
20 | SAINI R , KAPOOR R , KUMAR R , et al . CO2 utilizing microbes—a comprehensive review[J]. Biotechnol Adv., 2011, 29: 949-960. |
21 | FIGUEROA I A , BARNUM T P , SOMASEKHAR P Y , et al . Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(1): E92. |
22 | BOUZON M , PERRET A , LOREAU O , et al . A synthetic alternative to canonical one-carbon metabolism[J]. ACS Synthetic Biology, 2017, 6(8): 1520-1533. |
23 | GONG F , LI Y . Fixing carbon, unnaturally[J]. Science, 2016, 354(6314): 830-831. |
24 | BAREVEN A , NOOR E , LEWIS N E , et al . Design and analysis of synthetic carbon fixation pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8889-8894. |
25 | DESAI S H , ATSUMI S . Photosynthetic approaches to chemical biotechnology[J]. Curr. Opin. Biotechnol., 2013 ,24: 1031-1036. |
26 | ANGERMAYR S A , GORCHS ROVIRA A , HELLINGWERF K J . Metabolic engineering of cyanobacteria for the synthesis of commodity products[J]. Trends Biotechnol., 2015, 33: 352-361. |
27 | BLANKENSHIP R E , SAYRE R T . Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement[J]. Science, 2011, 332(6031): 805-809. |
28 | CHEN M , ROBERT E , BLANKENSHIP R E , et al . Expanding the solar spectrum used by photosynthesis[J]. Trends in Plant Science, 2011, 16(8): 427-431. |
29 | SHEN JR . The structure of photosystem Ⅱ and the mechanism of water oxidation in photosynthesis[J]. Annu. Rev. Plant Biol.,2015,66: 23-48. |
30 | LIANG F , LINDBLAD P . Effects of overexpressing photosynthetic carbon flux control enzymes in the cyanobacterium synechocystis PCC 6803[J]. Metab. Eng., 2016, 38: 56-64. |
31 | LIEW F , KOEPKE M , SIMPSON S . Gas fermentation for commercial biofuels production[M]. New Zealand: Intechopen, 2013: 126-173. |
32 | Á FERNÁNDEZ-NAVEIRA , VEIGA MC , KENNES C . H-B-E (hexanol-butanol-ethanol) fermentation for the production of higher alcohols from syngas/waste gas[J]. Journal of Chemical Technology & Biotechnology, 2017, 92: 712-731. |
33 | ABUBACKAR H N , VEIGA M C , KENNES C . Production of acids and alcohols from syngas in a two-stage continuous fermentation process[J]. Bioresource Technology, 2018, 253: 227-234. |
34 | FUNGMIN L , MARTIN M E , TAPPEL R C , et al . Gas fermentation—A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks[J]. Frontiers in Microbiology, 2016, 7(1275): 1-28. |
35 | KANNO M , CARROLL A L , ATSUMI S . Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria[J]. Nat. Commun., 2017, 8: 14724. |
36 | SHIMIZU R , DEMPO Y , NAKAYAMA Y , et al . New insight into the role of the calvin cycle: reutilization of CO2 emitted through sugar degradation[J]. Sci .Rep.,2015,5: 11617. |
37 | LI Y J , WANG M M , CHEN Y W , et al . Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars[J]. Sci. Rep., 2017,7: 43875. |
38 | YISHAI O , GOLDBACH L , TENENBOIM H , et al . Engineered assimilation of exogenous and endogenous formate in Escherichia coli [J]. ACS Synthetic Biology, 2017, 6(9): 1722. |
39 | YISHAI O , BOUZON M , DÖRING V , et al . In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli [J]. Chemical Engineering Science, 2018, 19(1): 65-89. |
40 | DÖRING V , DARII E , YISHAI OBAR-EVEN A ,et al . Implementation of a reductive route of one-carbon assimilation in Escherichia coli through directed evolution[J]. ACS Synthetic Biology, 2018,7(9): 2029-2036. |
41 | JONES S W , FAST A G , CARLSON E D , et al . CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion[J]. Nature Communications, 2016, 7: 12800. |
42 | HE H , MUTH C E , LINDNER S N , et al . Ribulose monophosphate shunt provides nearly all biomass and energy required for growth of E. coli [J]. ACS Synthetic Biology, 2018, 7(6): 1601-1611. |
43 | TUYISHIME P , WANG Y , FAN L W , et al . Engineering corynebacterium glutamicum for methanol-dependent growth and glutamate production[J]. Metab. Eng., 2018, 49: 220-231. |
44 | CHEN C T , CHEN F Y H , BOGORAD I W , et al . Synthetic methanol auxotrophy of Escherichia coli for methanol-dependent growth and production[J]. Metab. Eng., 2018,9: 257-266. |
45 | ELMEKAWY AHMED , M HEGAB HANAA , MOHANAKRISHNA GUNDA , et al . Technological advances in CO2, conversion electro-biorefinery: a step toward commercialization[J]. Bioresource Technology, 2016, 215: 357-370. |
46 | NEVIN K P , WOODARD T L , FRANKS A E , et al . Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J]. Micro. Bio., 2010, 1 (2): 103-110. |
47 | YANG Y , WU Y , HU Y , et al . Engineering electrode-attached microbial consortia for high-performance xylose-fed microbial fuel cell[J]. ACS Catalysis,2015,5: 6937-6945. |
48 | NEVIN K P , HENSLEY S A , FRANKS A E , et al . Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms[J]. Applied and Environmental Microbiology, 2011, 77(9): 2882-2886. |
49 | LI H , OPGENORTH P H , WERNICK D G , et al . Integrated electromicrobial conversion of CO2 to higher alcohols[J]. Science, 2012, 335(6076): 1596. |
50 | CHEN X , CAO Y , LI F , et al . Enzyme-assisted microbial electrosynthesis of poly(3-hydroxybutyrate) via CO2 bioreduction by engineered Ralstonia eutropha [J]. ACS Catalysis, 2018, 8(5): 4429-4437. |
51 | LIU C , GALLAGHER J J , SAKIMOTO K K , et al . Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals[J]. Nano Lett. ,2015,15: 3634-3639. |
52 | SAKIMOTO K K , WONG A B , YANG P . Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74. |
53 | YADAV R K , BAEG J O , OH G H , et al . A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2 [J]. Journal of the American Chemical Society, 2012, 134(28): 11455. |
54 | CHAUDHARY Y S , WOOLERTON T W , ALLEN C S , et al . Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals[J]. Chemical Communications, 2012, 48(1): 58-60. |
55 | JI X , SU Z , WANG P , et al . Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes[J]. ACS Nano, 2014, 9(4): 4600. |
56 | ROGER M , BROWN F , GABRIELLI W , et al . Efficient hydrogen-dependent carbon dioxide reduction by Escherichia coli [J]. Current Biology, 2018, 28(1): 140-145.e2. |
57 | JAJESNIAK P , ALI H E M O , WONG T S . Carbon dioxide capture and utilization using biological systems: opportunities and challenges[J]. J. Bioprocess. Biotech. , 2014, 4: 3. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[5] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[6] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[7] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[8] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[9] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[10] | 胡亚飞, 冯自平, 田佳垚, 宋文吉. 空气源燃气热泵系统多制热运行模式下余热回收特性[J]. 化工进展, 2023, 42(8): 4204-4211. |
[11] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[12] | 杨鹏威, 于琳竹, 王放放, 蒋昊轩, 赵光金, 李琦, 杜铭哲, 马双忱. 氨储能在新型电力系统的应用前景、挑战及发展[J]. 化工进展, 2023, 42(8): 4432-4446. |
[13] | 李佳, 樊星, 陈莉, 李坚. 硝酸生产尾气中NO x 和N2O联合脱除技术研究进展[J]. 化工进展, 2023, 42(7): 3770-3779. |
[14] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[15] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |