化工进展 ›› 2019, Vol. 38 ›› Issue (01): 545-555.DOI: 10.16085/j.issn.1000-6613.2018-1279
收稿日期:
2018-06-21
修回日期:
2018-07-10
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
陈晓东
作者简介:
秦逸凡(1994—),男,硕士研究生,研究方向为化学工程、食品工程、营养健康工程。E-mail:<email>20174209258@stu.suda.edu.cn</email>。|陈晓东,教授,博士生导师,研究方向为食品工程、仿生化工、食品科学与技术及生物颗粒技术。E-mail:<email>xdchen@mail.suda.edu.cn</email>。
基金资助:
Yifan QIN(),Jie XIAO,Xiaodong CHEN()
Received:
2018-06-21
Revised:
2018-07-10
Online:
2019-01-05
Published:
2019-01-05
Contact:
Xiaodong CHEN
摘要:
糖尿病是一种高发病率、多并发症的内分泌代谢性疾病,目前尚不存在治愈方法,患者不仅经济负担加重,生活质量下降,病情严重者还长期面临生命威胁。近些年来,糖尿病问题日趋严重,逐渐成为社会和相关领域关注的热点之一。本文从人体血糖调节系统出发,简述了两种糖尿病的病因,并从化学工程的角度将人体类比为血糖代谢的控制系统,以此分析了糖尿病患者血糖控制的主要方式,指出了其中血糖预测的关键性作用。然后详细介绍了血糖预测生理模型的两个主要部分,即葡萄糖-胰岛素代谢模型和葡萄糖吸收模型。突出了化学工程建模策略对吸收模型构建的重要作用,并分析了该方法的优势与现有模型的不足,根据近年来的体内外研究提出了进一步的优化方案。最后,对血糖预测的未来工作进行了展望,建议深化机理研究,将血糖预测模型与化工建模策略相结合,整体理解饮食对血糖调控的作用,完善长期预测模型和个性化模型。
中图分类号:
秦逸凡, 肖杰, 陈晓东. 血糖预测生理模型及化工建模策略[J]. 化工进展, 2019, 38(01): 545-555.
Yifan QIN, Jie XIAO, Xiaodong CHEN. Blood glucose prediction based on physiological and chemical reactor models[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 545-555.
1 | CHO N H , SHAW J E , KARURANGA S , et al . IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Research and Clinical Practice, 2018, 138: 271-281. |
2 | World Health Organization . Global report on diabetes[M]. Geneva, Switzerland: WHO Press, 2016. |
3 | MELMED S , POLONSKY K S , LARSEN P R , et al . Williams textbook of endocrinology[M]. 12th Edition. Philadelphia, PA: Saunders Elsevier, 2011. |
4 | COBELLI C , DALLA MAN C , SPARACINO G , et al . Diabetes: models, signals, and control[J]. IEEE Reviews in Biomedical Engineering, 2009, 2: 54-96. |
5 | LI J , KUANG Y , MASON C C . Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays[J]. Journal of Theoretical Biology, 2006, 242(3): 722-735. |
6 | LUCIDI P , ROSSETTI P , PORCELLATI F , et al . Mechanisms of insulin resistance after insulin-induced hypoglycemia in humans: the role of lipolysis[J]. Diabetes, 2010, 59(6): 1349-1357. |
7 | UNGER R H , SCHERER P E . Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity[J]. Trends in Endocrinology & Metabolism, 2010, 21(6): 345-352. |
8 | PARKER R S , DOYLE F J , PEPPAS N A . The intravenous route to blood glucose control[J]. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(1): 65-73. |
9 |
OVIEDO S , VEHÍ J , CALM R , et al . A review of personalized blood glucose prediction strategies for T1DM patients[J]. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33(6). DOI: 10.1002/cnm. 2833.
DOI URL |
10 | SPARACINO G , ZANDERIGO F , CORAZZA S , et al . Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series[J]. IEEE Transactions on Biomedical Engineering, 2007, 54(5): 931-937. |
11 | ELJIL K S , QADAH G , PASQUIER M . Predicting hypoglycemia in diabetic patients using data mining techniques[C]//Innovations in Information Technology (IIT), 2013 9th International Conference on IEEE. 2013: 130-135. |
12 | EFENDIC H , KIRCHSTEIGER H , FRECKMANN G , et al . Short-term prediction of blood glucose concentration using interval probabilistic models[C]//Control and Automation (MED), 2014 22nd Mediterranean Conference of IEEE. 2014: 1494-1499. |
13 | PALERM C C , WILLIS J P , DESEMONE J , et al . Hypoglycemia prediction and detection using optimal estimation[J]. Diabetes Technology & Therapeutics, 2005, 7(1): 3-14. |
14 | DE CANETE J F , GONZALEZ-PEREZ S , RAMOS-DIAZ J C . Artificial neural networks for closed loop control of in silico and ad hoc type 1 diabetes[J]. Computer Methods and Programs in Biomedicine, 2012, 106(1): 55-66. |
15 | WANG Y , WU X , MO X . A novel adaptive-weighted-average framework for blood glucose prediction[J]. Diabetes Technology & Therapeutics, 2013, 15(10): 792-801. |
16 | BALAKRISHNAN N P , RANGAIAH G P , SAMAVEDHAM L . Personalized blood glucose models for exercise, meal and insulin interventions in type 1 diabetic children[C]//Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. 2012: 1250-1253. |
17 | COBELLI C , RENARD E , KOVATCHEV B . Artificial pancreas: past, present, future[J]. Diabetes, 2011, 60(11): 2672-2682. |
18 | MALIK V S , POPKIN B M , BRAY G A , et al . Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk[J]. Circulation, 2010, 121(11): 1356-1364. |
19 | 刘慧颖, 任国峰 . 食物血糖指数及其预测模型研究进展[J]. 实用预防医学, 2014, 21(2): 255-256. |
LIU H Y , REN G F . Research progress of glycemic index and prediction model[J]. Practical Preventive Medicine, 2014, 21(2): 255-256. | |
20 | 孟金凤,应剑,陈然,等 . 饮食调控高血糖的现状和策略[J]. 中国公共卫生, 2018, 34(s1): 216-222. |
MENG J F , YING J , CHEN R , et . Advances in researches on status and strategy of diet regulation on hyperglycemia in diabetic patients[J] Chinese Journal of Public Health, 2018, 34(s1):216-222. | |
21 | PENRY D L , JUMARS P A . Chemical reactor analysis and optimal digestion[J]. Bioscience, 1986, 36(5): 310-315. |
22 | 董宇, 赵兰英, 吴萍, 等 . 生理药代动力学模型的特征及其国内外研究进展[J]. 中国实验方剂学杂志, 2012 ,18(1): 247-250. |
DONG Y , ZHAO L Y , WU P , et al . Characteristics and research progress of physiologically based pharmacokinetic model[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2012, 18(1): 247-250 | |
23 | COBELLI C , CARSON E . Introduction to modeling in physiology and medicine[M]. Amsterdam: Elsevier, 2008. |
24 | BERGMAN R N , PHILLIPS L S , COBELLI C . Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose[J]. The Journal of Clinical Investigation, 1981, 68(6): 1456-1467. |
25 | COBELLI C , TOFFOLO G , FERRANNINI E . A model of glucose kinetics and their control by insulin, compartmental and noncompartmental approaches[J]. Mathematical Biosciences, 1984, 72(2): 291-315. |
26 | BERGMAN R N . Toward physiological understanding of glucose tolerance: minimal-model approach[J]. Diabetes, 1989, 38(12): 1512-1527. |
27 | 李冬果, 李林 . Bergman 最小模型的研究进展[J]. 现代生物医学进展, 2009, 9(4): 764-767. |
LI D G , LI L . Research progress of bergman's minimal model[J]. Progress in Modern Biomedicine, 2009, 9(4): 764-767. | |
28 | HOVORKA R , SHOJAEE-MORADIE F , CARROLL P V , et al .Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT[J]. American Journal of Physiology: Endocrinology and Metabolism, 2002, 282(5): E992-E1007. |
29 | HOVORKA R , CANONICO V , CHASSIN L J , et al . Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes[J]. Physiological Measurement, 2004, 25(4): 905. |
30 | WILINSKA M E , CHASSIN L J , SCHALLER H C , et al . Insulin kinetics in type-1 diabetes: continuous and bolus delivery of rapid acting insulin[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(1): 3-12. |
31 | DALLA MAN C , RIZZA R A , COBELLI C . Meal simulation model of the glucose-insulin system[J]. IEEE Transactions on Biomedical Engineering, 2007, 54(10): 1740-1749. |
32 | DALLA MAN C , TOFFOLO G , BASU R , et al . A model of glucose production during a meal[C]//Engineering in Medicine and Biology Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE. 2006: 5647-5650. |
33 | DALLA MAN C , CAMILLERI M , COBELLI C . A system model of oral glucose absorption: validation on gold standard data[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2472-2478. |
34 | NIELSEN M F , BASU R , WISE S , et al . Normal glucose-induced suppression of glucose production but impaired stimulation of glucose disposal in type 2 diabetes: evidence for a concentration-dependent defect in uptake[J]. Diabetes, 1998, 47(11): 1735-1747. |
35 | BREDA E , CAVAGHAN M K , TOFFOLO G , et al . Oral glucose tolerance test minimal model indexes of β cell function and insulin sensitivity[J]. Diabetes, 2001, 50(1): 150-158. - |
36 | MAN C D , MICHELETTO F , LV D , et al . The UVA/PADOVA type 1 diabetes simulator: new features[J]. Journal of Diabetes Science and Technology, 2014, 8(1): 26-34. |
37 | KOVATCHEV B P , BRETON M , DALLA MAN C , et al . In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes[J].J. Diabetes Sci. Technol., 2009, 3(1): 44-55. |
38 | SORENSEN J T . A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes[D]. Boston :Massachusetts Institute of Technology, 1985. |
39 | ROY A , PARKER R S . Mixed meal modeling and disturbance rejection in type Ⅰ diabetic patients[C]//Engineering in Medicine and Biology Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE. 2006: 323-326. |
40 | JACQUEZ J A , SIMON C P . Qualitative theory of compartmental systems[J]. Siam Review, 1993, 35(1): 43-79. |
41 | MARZE S . Bioavailability of nutrients and micronutrients: advances in modeling and in vitro approaches[J]. Annual Review of Food Science and Technology, 2017, 8: 35-55. |
42 | LEHMANN E D , Deutsch T . A physiological model of glucose-insulin interaction in type 1 diabetes mellitus[J]. Journal of Biomedical Engineering, 1992, 14(3): 235-242. |
43 | FABIETTI P G , CANONICO V , FEDERICI M O , et al . Control oriented model of insulin and glucose dynamics in type 1 diabetics[J]. Medical and Biological Engineering and Computing, 2006, 44(1/2): 69-78. |
44 | LE FEUNTEUN S , BARBÉ F , RÉMOND D , et al . Impact of the dairy matrix structure on milk protein digestion kinetics: mechanistic modelling based on mini-pig in vivo data[J]. Food and Bioprocess Technology, 2014, 7(4): 1099-1113. |
45 | VAN BENTUM R , NELSON M I . Modelling the passage of food through an animal stomach: a chemical reactor engineering approach[J]. Chemical Engineering Journal, 2011, 166(1): 315-323. |
46 | FATIMA J , IQBAL C W , HOUGHTON S G , et al . Hexose transporter expression and function in mouse small intestine: role of diurnal rhythm[J]. Journal of Gastrointestinal Surgery, 2009, 13(4): 634-641. |
47 | HOUGHTON S G , IQBAL C W , DUENES J A , et al . Coordinated, diurnal hexose transporter expression in rat small bowel: implications for small bowel resection[J]. Surgery, 2008, 143(1): 79-93. |
48 | DIKEMAN C L , FAHEY JR G C . Viscosity as related to dietary fiber: a review[J]. Critical Reviews in Food Science and Nutrition, 2006, 46(8): 649-663. |
49 | FONSECA M R J . An engineering understanding of the small intestine[D]. Birmingham: University of Birmingham, 2012. |
50 | PENRY D L , JUMARS P A . Modeling animal guts as chemical reactors[J]. The American Naturalist, 1987, 129(1): 69-96. |
51 | STOLL B R , BATYCKY R P , LEIPOLD H R , et al . A theory of molecular absorption from the small intestine[J]. Chemical Engineering Science, 2000, 55(3): 473-489. |
52 | WILLMANN S , SCHMITT W , KELDENICH J , et al . A physiologic model for simulating gastrointestinal flow and drug absorption in rats[J]. Pharmaceutical Research, 2003, 20(11): 1766-1771. |
53 | WILLMANN S , EDGINTON A N , DRESSMAN J B . Development and validation of a physiology-based model for the prediction of oral absorption in monkeys[J]. Pharmaceutical Research, 2007, 24(7): 1275-1282. |
54 | WILLMANN S , SCHMITT W , KELDENICH J , et al . A physiological model for the estimation of the fraction dose absorbed in humans[J]. Journal of Medicinal Chemistry, 2004, 47(16): 4022-4031. |
55 | SALINARI S , BERTUZZI A , MINGRONE G . Intestinal transit of a glucose bolus and incretin kinetics: a mathematical model with application to the oral glucose tolerance test[J]. American Journal of Physiology: Endocrinology and Metabolism, 2011, 300(6): E955-E965. |
56 | TAGHIPOOR M , LESCOAT P , LICOIS J R , et al . Mathematical modeling of transport and degradation of feedstuffs in the small intestine[J]. Journal of Theoretical Biology, 2012, 294: 114-121. |
57 | TAGHIPOOR M , BARLES G , GEORGELIN C , et al . Digestion modeling in the small intestine: impact of dietary fiber[J]. Mathematical Biosciences, 2014, 258: 101-112. |
58 | MOXON T E , GOUSETI O , BAKALIS S . In silico modelling of mass transfer & absorption in the human gut[J]. Journal of Food Engineering, 2016, 176: 110-120. |
59 | MOXON T E , NIMMEGEERS P , TELEN D , et al . Effect of chyme viscosity and nutrient feedback mechanism on gastric emptying[J]. Chemical Engineering Science, 2017, 171: 318-330. |
60 | MARCOTTE M , HOSHAHILI A R T , RAMASWAMY H S . Rheological properties of selected hydrocolloids as a function of concentration and temperature[J]. Food Research International, 2001, 34(8): 695-703. |
61 | THARAKAN A , NORTON I T , FRYER P J , et al . Mass transfer and nutrient absorption in a simulated model of small intestine[J]. Journal of Food Science, 2010, 75(6): E339-E346. |
62 | DENG R , SELOMULYA C , WU P , et al . A soft tubular model reactor based on the bionics of a small intestine-starch hydrolysis[J]. Chemical Engineering Research and Design, 2016, 112: 146-154. |
63 | WRIGHT N D , KONG F , WILLIAMS B S , et al . A human duodenum model (HDM) to study transport and digestion of intestinal contents[J]. Journal of Food Engineering, 2016, 171: 129-136. |
64 | BINDER H J . Absorption and secretion of water and electrolytes by small and large intestine[J]. Gastrointestinal Disease, 1983: 812-829. |
65 | ABBOTT M S R , HARVEY A P , PEREZ G V , et al . Biological processing in oscillatory baffled reactors: operation, advantages and potential[J]. Interface Focus, 2013, 3(1): 20120036. |
66 | LIM Y F , DE LOUBENS C , LOVE R J , et al . Flow and mixing by small intestine villi[J]. Food & Function, 2015, 6(6): 1787-1795. |
67 | TRUSOV P V , ZAITSEVA N V , KAMALTDINOV M R . A multiphase flow in the antroduodenal portion of the gastrointestinal tract: a mathematical model[J]. Computational and Mathematical Methods in Medicine, 2016, 2016:5164029. |
68 | SCHULZE K S . The imaging and modelling of the physical processes involved in digestion and absorption[J]. Acta Physiologica, 2015, 213(2): 394-405. |
69 | SLAUGHTER S L , ELLIS P R , BUTTERWORTH P J . An investigation of the action of porcine pancreatic α-amylase on native and gelatinised starches[J]. Biochimica et Biophysica Acta (BBA): General Subjects, 2001, 1525(1/2): 29-36. |
70 | ZHANG X , LIAO Z , WU P , et al . Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an in vitro dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018, 106: 495-502 |
71 | CHEN L , XU Y , FAN T , et al . Gastric emptying and morphology of a ‘near real’ in vitro human stomach model (RD-IV-HSM)[J]. Journal of Food Engineering, 2016, 183: 1-8. |
72 | AGUILERA J M . Food engineering into the Ⅹ century[J]. AIChE Journal, 2018, 64(1): 2-11. |
73 | BORNHORST G M , GOUSETI O , WICKHAM M S J , et al . Engineering digestion: multiscale processes of food digestion[J]. Journal of Food Science, 2016, 81(3): R534-R543. |
[1] | 马云飞, 王建兵, 贾超敏, 邢懿心, 柯述, 张先. 臭氧氧化动力学模型及反应器建模研究进展[J]. 化工进展, 2022, 41(S1): 556-570. |
[2] | 刘永飞, 苏伟, 梁琪琪, 李青云, 刘幽燕, 唐爱星. 叔丁醇体系中化学酶法催化α-蒎烯环氧化[J]. 化工进展, 2022, 41(6): 3002-3009. |
[3] | 赵志建, 蒲源, 王丹. 液体弹珠微型反应器的设计构建及应用基础[J]. 化工进展, 2021, 40(11): 6145-6154. |
[4] | 符起旋, 邓胜松, 王淮, 姚日生. 撞击对稀碱液去除稻草秸秆木质素过程中的强化作用[J]. 化工进展, 2020, 39(S2): 427-433. |
[5] | 邹思宇,凌二锁,乐淑荣,孙胜鹏,吴张雄,陈晓东,吴铎,肖杰. 臭氧催化氧化反应器模拟与分析[J]. 化工进展, 2019, 38(9): 3969-3978. |
[6] | 蔡配配,邓晓刚,曹玉苹,邓佳伟. 基于WPRKPCA的非线性化工过程微小故障检测[J]. 化工进展, 2019, 38(12): 5247-5256. |
[7] | 刘彦铄,王新赫,张军社,魏进家. 太阳能甲烷重整反应器研究进展[J]. 化工进展, 2019, 38(12): 5339-5350. |
[8] | 张天永, 王梦颖, 李彬, 刘茜. 三甲基苯酚催化合成三甲基苯醌研究进展[J]. 化工进展, 2016, 35(02): 513-518. |
[9] | 马婷婷1,朱跃钊1,陈海军1,马炎1,金丽珠1,杨丽2,廖传华1. 太阳能高温热化学反应器研究进展[J]. 化工进展, 2014, 33(05): 1134-1141. |
[10] | 林海波,伍振毅,黄卫民,徐 红,张雪娜. 工业废水电化学处理技术的进展及其发展方向 [J]. 化工进展, 2008, 27(2): 223-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |