1 |
VIALETTO J, HAYAKAWA M, KAVOKINE N, et al. Magnetic actuation of drops and liquid marbles using a deformable paramagnetic liquid substrate[J]. Angewandte Chemie International Edition, 2017, 56(52): 16565-16570.
|
2 |
ICHIMURA K, OH S K, NAKAGAWA M. Light-driven motion of liquids on a photoresponsive surface[J]. Science, 2000, 288(5471): 1624-1626.
|
3 |
VENANCIO-MARQUES A, BARBAUD F, BAIGL D. Microfluidic mixing triggered by an external LED illumination[J]. Journal of the American Chemical Society, 2013, 135(8): 3218-3223.
|
4 |
BERNÁ J, LEIGH D A, LUBOMSKA M, et al. Macroscopic transport by synthetic molecular machines[J]. Nature Materials, 2005, 4(9): 704-710.
|
5 |
汪伟, 苏瑶瑶, 刘壮, 等. 微流控法可控构建微尺度功能材料[J]. 化工进展, 2019, 38(1): 421-433.
|
|
WANG Wei, SU Yaoyao, LIU Zhuang, et al. Controllable microfluidic fabrication of microscale functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 421-433.
|
6 |
AUSSILLOUS P, QUÉRÉ D. Liquid marbles[J]. Nature, 2001, 411(6840): 924-927.
|
7 |
CHU Y, WANG Z K, PAN Q M. Constructing robust liquid marbles for miniaturized synthesis of graphene/Ag nanocomposite[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8378-8386.
|
8 |
ZANG D Y, CHEN Z, ZHANG Y J, et al. Effect of particle hydrophobicity on the properties of liquid water marbles[J]. Soft Matter, 2013, 9(20): 5067.
|
9 |
ARBATAN T, LI L Z, TIAN J F, et al. Liquid marbles as micro-bioreactors for rapid blood typing[J]. Advanced Healthcare Materials, 2012, 1(1): 80-83.
|
10 |
MCHALE G, NEWTON M I. Liquid marbles: principles and applications[J]. Soft Matter, 2011, 7(12): 5473.
|
11 |
MIAO Y E, LEE H K, CHEW W S, et al. Catalytic liquid marbles: Ag nanowire-based miniature reactors for highly efficient degradation of methylene blue[J]. Chemical Communications, 2014, 50(44): 5923-5926.
|
12 |
LIU D H, CHOI S, CHEN B, et al. Cover picture: nontoxic membrane-active antimicrobial arylamide oligomers[J]. Angewandte Chemie International Edition, 2004, 43(9): 1033.
|
13 |
FULLARTON C, DRAPER T C, PHILLIPS N, et al. Evaporation, lifetime, and robustness studies of liquid marbles for collision-based computing[J]. Langmuir, 2018, 34(7): 2573-2580.
|
14 |
MAHADEVAN L, POMEAU Y. Rolling droplets[J]. Physics of Fluids, 1999, 11(9): 2449-2453.
|
15 |
MCELENEY P, WALKER G M, LARMOUR I A, et al. Liquid marble formation using hydrophobic powders[J]. Chemical Engineering Journal, 2009, 147(2/3): 373-382.
|
16 |
DANDAN M, ERBIL H Y. Evaporation rate of graphite liquid marbles: comparison with water droplets[J]. Langmuir, 2009, 25(14): 8362-8367.
|
17 |
MELE E, BAYER I S, NANNI G, et al. Biomimetic approach for liquid encapsulation with nanofibrillar cloaks[J]. Langmuir, 2014, 30(10): 2896-2902.
|
18 |
NGUYEN T H, HAPGOOD K, SHEN W. Observation of the liquid marble morphology using confocal microscopy[J]. Chemical Engineering Journal, 2010, 162(1): 396-405.
|
19 |
FERNANDES A M, MANTIONE D, GRACIA R, et al. From polymer latexes to multifunctional liquid marbles[J]. ACS Applied Materials & Interfaces, 2015, 7(7): 4433-4441.
|
20 |
BORMASHENKO E, POGREB R, WHYMAN G, et al. Surface tension of liquid marbles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 351(1/2/3): 78-82.
|
21 |
AVRĂMESCU R E, GHICA M V, DINU-PÎRVU C, et al. Liquid marbles: from industrial to medical applications[J]. Molecules, 2018, 23(5): 1120.
|
22 |
CELESTINI F, KOFMAN R. Vibration of submillimeter-size supported droplets[J]. Physical Review E, 2006, 73(4): 041602.
|
23 |
ASARE-ASHER S, CONNOR J N, SEDEV R. Elasticity of liquid marbles[J]. Journal of Colloid and Interface Science, 2015, 449: 341-346.
|
24 |
BORMASHENKO E. Liquid marbles, elastic nonstick droplets: from minireactors to self-propulsion[J]. Langmuir, 2017, 33(3): 663-669.
|
25 |
JIN J, OOI C H, DAO D V, et al. Liquid marble coalescence via vertical collision[J]. Soft Matter, 2018, 14(20): 4160-4168.
|
26 |
CHEN Z, ZANG D, ZHAO L, et al. Liquid marble coalescence and triggered microreaction driven by acoustic levitation[J]. Langmuir, 2017, 33(25): 6232-6239.
|
27 |
LIU Z, FU X Y, BINKS B P, et al. Coalescence of electrically charged liquid marbles[J]. Soft Matter, 2016, 13(1): 119-124.
|
28 |
闫超, 李梅, 路庆华. 液体弹珠及其研究进展[J]. 化学进展, 2011, 23(4): 649-656.
|
|
YAN Chao, LI Mei, LU Qinghua. Progress in liquid marbles[J]. Progress in Chemistry, 2011, 23(4): 649-656.
|
29 |
KIDO K, IRELAND P M, SEKIDO T, et al. Formation of liquid marbles using pH-responsive particles: rolling vs electrostatic methods[J]. Langmuir, 2018, 34(17): 4970-4979.
|
30 |
CASTRO J O, NEVES B M, REZK A R, et al. Continuous production of Janus and composite liquid marbles with tunable coverage[J]. ACS Applied Materials & Interfaces, 2016, 8(28): 17751-17756.
|
31 |
BHOSALE P S, PANCHAGNULA M V. Sweating liquid micro-marbles: dropwise condensation on hydrophobic nanoparticulate materials[J]. Langmuir, 2012, 28(42): 14860-14866.
|
32 |
LIU Z, ZHANG Y Y, CHEN C L, et al. Larger stabilizing particles make stronger liquid marble[J]. Small, 2019, 15(3): 1804549.
|
33 |
BHOSALE P S, PANCHAGNULA M V, STRETZ H A. Mechanically robust nanoparticle stabilized transparent liquid marbles[J]. Applied Physics Letters, 2008, 93(3): 034109.
|
34 |
QIN S W, WANG D, WANG J X, et al. Polyhedral oligomeric silsesquioxane-coated nanodiamonds for multifunctional applications[J]. Journal of Materials Science, 2018, 53(23): 15915-15926.
|
35 |
CHIN J M, REITHOFER M R, TAN T T, et al. Supergluing MOF liquid marbles[J]. Chemical Communications, 2013, 49(5): 493-495.
|
36 |
ZHAO Z J, LING C, WANG D, et al. Liquid marbles in liquid[J]. Small, 2020, 16(37): 2002802.
|
37 |
ZHANG L B, CHA D, WANG P. Remotely controllable liquid marbles[J]. Advanced Materials, 2012, 24(35): 4756-4760.
|
38 |
BORMASHENKO E, FRENKEL M, BORMASHENKO Y, et al. Superposition of translational and rotational motions under self-propulsion of liquid marbles filled with aqueous solutions of camphor[J]. Langmuir, 2017, 33(46): 13234-13241.
|
39 |
PAVEN M, MAYAMA H, SEKIDO T, et al. Light-driven delivery and release of materials using liquid marbles[J]. Advanced Functional Materials, 2016, 26(19): 3199-3206.
|
40 |
BORMASHENKO E, BORMASHENKO Y, GRYNYOV R, et al. Self-propulsion of liquid marbles: leidenfrost-like levitation driven by Marangoni flow[J]. The Journal of Physical Chemistry C, 2015, 119(18): 9910-9915.
|
41 |
AUSSILLOUS P, QUÉRÉ D. Properties of liquid marbles[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 973-999.
|
42 |
BORMASHENKO E, POGREB R, BALTER R, et al. Liquid marbles containing petroleum and their properties[J]. Petroleum Science, 2015, 12(2): 340-344.
|
43 |
SUN Y J, HUANG X, SOH S. Solid-to-liquid charge transfer for generating droplets with tunable charge[J]. Angewandte Chemie International Edition, 2016, 55(34): 9956-9960.
|
44 |
ZHAO Y, FANG J, WANG H X, et al. Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles[J]. Advanced Materials, 2010, 22(6): 707-710.
|
45 |
LUO X, YIN H, LI X, et al. CO2-Triggered microreactions in liquid marbles[J]. Chemical Communications, 2018, 54(66): 9119-9122.
|
46 |
ZHAO Z J, QIN S W, WANG D, et al. Multi-stimuli-responsive liquid marbles stabilized by superhydrophobic luminescent carbon dots for miniature reactors[J]. Chemical Engineering Journal, 2020, 391: 123478.
|
47 |
HAN X, LEE H K, LEE Y H, et al. Dynamic rotating liquid marble for directional and enhanced mass transportation in three-dimensional microliter droplets[J]. The Journal of Physical Chemistry Letters, 2017, 8(1): 243-249.
|
48 |
GAO W, LEE H K, HOBLEY J, et al. Graphene liquid marbles as photothermal miniature reactors for reaction kinetics modulation[J]. Angewandte Chemie International Edition, 2015, 127(13): 4065-4068.
|
49 |
LI M S, TIAN J F, LI L Z, et al. Charge transport between liquid marbles[J]. Chemical Engineering Science, 2013, 97: 337-343.
|
50 |
WANG D, ZHU L, CHEN J F, et al. Liquid marbles based on magnetic upconversion nanoparticles as magnetically and optically responsive miniature reactors for photocatalysis and photodynamic therapy[J]. Angewandte Chemie International Edition, 2016, 55(36): 10795-10799.
|