化工进展 ›› 2021, Vol. 40 ›› Issue (11): 6135-6144.DOI: 10.16085/j.issn.1000-6613.2020-2414
陈少华1,2(), 陈文良1,2, 丁益1,2, 赵东林1,2, 谢发之1,2, 任启芳1,2
收稿日期:
2020-12-01
修回日期:
2021-01-19
出版日期:
2021-11-05
发布日期:
2021-11-19
通讯作者:
陈少华
作者简介:
陈少华(1971—),男,博士,副教授,硕士生导师,研究方向为环境工程材料。E-mail:基金资助:
CHEN Shaohua1,2(), CHEN Wenliang1,2, DING Yi1,2, ZHAO Donglin1,2, XIE Fazhi1,2, REN Qifang1,2
Received:
2020-12-01
Revised:
2021-01-19
Online:
2021-11-05
Published:
2021-11-19
Contact:
CHEN Shaohua
摘要:
纳米材料构建的化学修饰电极用于多巴胺电化学检测已经被广泛研究。当前电极研究策略主要为采用复合材料并构建三维结构以增大吸附表面积。本综述总结了目前常用的纳米碳修饰材料与纳米金属修饰材料,比较分析了其表面结构形貌对多巴胺吸附的影响及吸附机制,总结了目前常用的构建三维修饰电极的方法。分析结果表明,相对于一维形貌,三维形貌结构的修饰电极往往具有更好的检测能力,三维结构不仅能显著增大表面积,提供更多的吸附位点,还可能产生“薄膜效应”,该效应在一定程度上能提高响应灵敏度,但超过一定限度会减缓响应时间,第一性原理分析表明,多巴胺在纳米修饰电极材料表面的吸附机制是化学吸附。最后指出了在改进修饰电极结构设计合理性、增强抗干扰性和提高选择性,以及新的检测控制机制分析方面需要进一步研究。
中图分类号:
陈少华, 陈文良, 丁益, 赵东林, 谢发之, 任启芳. 纳米材料及其三维结构修饰电极检测多巴胺的研究进展[J]. 化工进展, 2021, 40(11): 6135-6144.
CHEN Shaohua, CHEN Wenliang, DING Yi, ZHAO Donglin, XIE Fazhi, REN Qifang. Study on the structure and adsorption mechanism of three dimensional electrochemical modified electrode for dopamine response[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6135-6144.
1 | WEI Xiao, ZHANG Zhendong, WANG Zhenhong. A simple dopamine detection method based on fluorescence analysis and dopamine polymerization[J]. Microchemical Journal, 2019, 145: 55-58. |
2 | SIDDIQUI Samia, SHAWUTI Shalima, SIRAJ Uddin, et al. L-cysteine-mediated self-assembled Ag-Au nanoparticles as fractal patterns with bowling-alley-like hollow arrays for electrochemical sensing of dopamine[J]. Industrial and Engineering Chemistry Research, 2019, 58(19): 8035-8043. |
3 | JIANG Luyun, NELSON Geoffrey W, ABDA Julia, et al. Novel modifications to carbon-based electrodes to improve the electrochemical detection of dopamine[J]. ACS Applied Materials and Interfaces, 2016, 8(42): 28338-28348. |
4 | Mitch TAYLOR I, ROBBINS Elaine M, CATT Kasey A, et al. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes[J]. Biosensors and Bioelectronics, 2017, 89: 400-410. |
5 | GOYAL Rajendra N, GUPTA Vinod K, CHATTERJEE Sanghamitra. Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode[J]. Sensors and Actuators B: Chemical, 2010, 149(1): 252-258. |
6 | WANG Zhenyu, YU Xiaodong, PAN Bo, et al. Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes[J]. Environmental Science and Technology, 2010, 44(3): 978-984. |
7 | SHIN Jaewook, KIM Kyeongjun, YOON Jinho, et al. Silver nanoparticle modified electrode covered by graphene oxide for the enhanced electrochemical detection of dopamine[J]. Sensors, 2017, 17(12): 2771. |
8 | REDDY Sathish, KUMARA SWAMY B E, VASAN H N, et al. ZnO and ZnO/polyglycine modified carbon paste electrode for electrochemical investigation of dopamine[J]. Analytical Methods, 2012, 4: 2778-2783. |
9 | Ahmat ALI, JAMAL Ruxangul, ABDIRYIM Tursun, et al. Synthesis of monodispersed PEDOT/Au hollow nanospheres and its application for electrochemical determination of dopamine and uric acid[J]. Journal of Electroanalytical Chemistry, 2017, 787: 110-117. |
10 | SUN Danfeng, LI Hongji, LI Mingji, et al. Electrodeposition synthesis of a NiO/CNT/PEDOT composite for simultaneous detection of dopamine, serotonin, and tryptophan[J]. Sensors and Actuators B: Chemical, 2018, 259: 433-442. |
11 | XIE Liqing, ZHANG Yanhui, GAO Fei, et al. A highly sensitive dopamine sensor based on a polyaniline/reduced graphene oxide/Nafion nanocomposite[J]. Chinese Chemical Letters, 2017, 28(1): 41-48. |
12 | LI Jianbo, WANG Yanhui, SUN Yuanling, et al. A novel ionic liquid functionalized graphene oxide supported gold nanoparticle composite film for sensitive electrochemical detection of dopamine[J]. RSC Advances, 2017, 7(4): 2315-2322. |
13 | MAJIDI M R, POURNAGHI-AZAR Mohammad Hossein, BAJEH BAJ Reza FADAKAR. Graphene nanoplatelets like structures formed on ionic liquid modified carbon-ceramic electrode: as a sensing platform for simultaneous determination of dopamine and acetaminophen[J]. Journal of Molecular Liquids, 2016, 220: 778-787. |
14 | KUMAR Krishna K, DEVENDIRAN M, KALAIVANI R A, et al. Enhanced electrochemical sensing of dopamine in the presence of AA and UA using a curcumin functionalized gold nanoparticle modified electrode[J]. New Journal of Chemistry, 2019, 43: 19003-19013. |
15 | LI Dawei, AO Kelong, WANG Qingqing, et al. Preparation of Pd/bacterial cellulose hybrid nanofibers for dopamine detection[J]. Molecules, 2016, 21: 618-620. |
16 | KAFI Md Abdul, PAUL Ambarish, VILOURAS Anastasios, et al. Mesoporous chitosan based conformable and resorbable biostrip for dopamine detection[J]. Biosensors and Bioelectronics, 2020, 147: 111781-111788. |
17 | BANKS Craig E, COMPTON Richard G. New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite[J]. Analyst, 2006, 131(1): 15-21. |
18 | KOHORI Natália Akemi, DA SILVA Martin Kássio Leme, CESARINO Ivana. Evaluation of graphene oxide and reduced graphene oxide in the immobilization of laccase enzyme and its application in the determination of dopamine[J]. Journal of Solid State Electrochemistry, 2018, 22(1): 141-148. |
19 | UNWIN Patrick R, GUELL Aleix G, ZHANG Guohui. Nanoscale electrochemistry of sp2 carbon materials: from graphite and graphene to carbon nanotubes[J]. Accounts of Chemical Research, 2016, 49(9): 2041-2048. |
20 | PATEL Anisha N, TAN Sze-yin, MILLER Tan S, et al. Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine[J]. Analytical Chemistry, 2013, 85(24): 11755-11764. |
21 | PATEL Anisha N, MCKELVEY Kim, UNWIN Patrick R. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces[J]. Journal of the American Chemical Society, 2012, 134(50): 20246-20249. |
22 | SUN Linqiang, HAN Xiao, LIU Kai, et al. Template-free construction of hollow α-Fe2O3 hexagonal nanocolumn particles with an exposed special surface for advanced gas sensing properties[J]. Nanoscale, 2015, 7(21): 9416-9420. |
23 | 刘羽, 贺鑫, 周文英, 等. 晶须形中空多孔氮掺杂复合碳电极材料的制备及电化学性能研究[J]. 化工学报, 2018, 69(S1): 115-122. |
LIU Yu, HE Xin, ZHOU Wenying, et al. Preparation and electrochemical properties of whisker-shaped hollow porous nitrogen-doped composite carbon electrode materials[J]. CIESC Journal, 2018, 69(S1): 115-122. | |
24 | 张亚婷, 任绍昭, 李景凯, 等. PANI/煤基石墨烯宏观体复合材料的制备及其电化学性能[J]. 化工学报, 2017, 68(11): 4316-4322. |
ZHANG Yating, REN Shaozhao, LI Jingkai, et al. Fabrication and electrochemical capacitive performance of PANI/coal-based three-dimensional graphene[J]. CIESC Journal, 2017, 68(11): 4316-4322. | |
25 | HUANG Bintong, LIU Jie, LAI Linfei, et al. A free-standing electrochemical sensor based on graphene foam-carbon nanotube composite coupled with gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid[J]. Journal of Electroanalytical Chemistry, 2017, 801: 129-134. |
26 | XU Guangyuan, JARJES Zahraa A, DESPREZ Valentin, et al. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene[J]. Biosensors and Bioelectronics, 2018, 107: 184-191. |
27 | XU Guangyuan, JARJES Zahraa A, WANG Hsiangwei, et al. Detection of neurotransmitters by three-dimensional laser-scribed graphene grass electrodes[J]. ACS Applied Materials and Interfaces, 2018, 10(49): 42136-42145. |
28 | SCHMIDT Andreas C, WANG Xin, ZHU Yuntian, et al. Carbon nanotube yarn electrodes for enhanced detection of neurotransmitter dynamics in live brain tissue[J]. ACS Nano, 2013, 7(9): 7864-7873. |
29 | HARREITHER Wolfgang, TROUILLON Raphaël, POULIN Philippe, et al. Carbon nanotube fiber microelectrodes show a higher resistance to dopamine fouling[J]. Analytical Chemistry, 2013, 85(15): 7447-7453. |
30 | YANG Cheng, TRIKANTZOPOULOS Elefterios, NGUYEN Michael D, et al. Laser treated carbon nanotube yarn microelectrodes for rapid and sensitive detection of dopamine in vivo[J]. ACS Sensors, 2016, 1(5): 508-515. |
31 | YANG Cheng, TRIKANTZOPOULOS Elefterios, JACOBS Christopher B, et al. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: correlation of electrochemical performance and surface properties[J]. Analytica Chimica Acta, 2017, 965: 1-8. |
32 | YANG Yang, LI Meixian, ZHU Zhiwei. A novel electrochemical sensor based on carbon nanotubes array for selective detection of dopamine or uric acid[J]. Talanta, 2019, 201: 295-300. |
33 | ZHU Linbo, XIU Yonghao, HESS Dennis W, et al. Aligned carbon nanotube stacks by water-assisted selective etching[J]. Nano Letters, 2005, 5(12): 2641-2645. |
34 | XIAO Ning, Jill VENTON B. Rapid, sensitive detection of neurotransmitters at microelectrodes modified with self-assembled SWCNT forests[J]. Analytical Chemistry, 2012, 84(18): 7816-7822. |
35 | PUTHONGKHAM Pumidech, YANG Cheng, Jill VENTON B. Carbon nanohorn-modified carbon fiber microelectrodes for dopamine detection[J]. Electroanalysis, 2018, 30(6): 1073-1081. |
36 | 王群, 孙玉希, 崔书亚, 等. 密度泛函理论研究多巴胺在纯的Fe和Ca掺杂的石墨烯材料表面的吸附机理[J]. 原子与分子物理学报, 2017, 34(4): 601-610. |
WANG Qun, SUN Yuxi, CUI Shuya, et al. Adsorption mechanism studies of dopamine on pure, Fe and Ca doped graphene by density functional theory[J]. Journal of Atomic and Molecular Physics, 2017, 34(4): 601-610. | |
37 | LI Shanshan, ZHOU Wenyi, JIANG Min, et al. Insights into diverse performance for the electroanalysis of Pb(Ⅱ) on Fe2O3 nanorods and hollow nanocubes: toward analysis of adsorption sites[J]. Electrochimica Acta, 2018, 288: 42-51. |
38 | LIN Chingchieh, Tsangjin JUO, CHEN Yingjie, et al. Enhanced cyclic voltammetry using 1-D gold nanorods synthesized via AAO template electrochemical deposition[J]. Desalination, 2008, 233(1/2/3): 113-119. |
39 | WANG Wei, YANG Xuan, CUI Hua. Growth mechanism of flowerlike gold nanostructures: surface plasmon resonance (SPR) and resonance rayleigh scattering (RRS) approaches to growth monitoring[J]. Journal of Physical Chemistry C, 2008, 112(42): 16348-16353. |
40 | ZHENG Yanjie, HUANG Zhengjun, ZHAO Chengfei, et al. A gold electrode with a flower-like gold nanostructure for simultaneous determination of dopamine and ascorbic acid[J]. Microchimica Acta, 2013, 180(7/8): 537-544. |
41 | TAHERI Ramezan Ali, ESKANDARI Khadijeh, NEGAHDARY Masoud. An electrochemical dopamine aptasensor using the modified Au electrode with spindle-shaped gold nanostructure[J]. Microchemical Journal, 2018, 143: 243-251. |
42 | TALEMI Rasoul Pourtaghavi, MOUSAVI Aeyed Mehdi, AFRUZI Hossein. Using gold nanostars modified pencil graphite electrode as a novel substrate for design a sensitive and selective dopamine aptasensor[J]. Materials Science and Engineering C, 2017, 73: 700-708. |
43 | WANG Yong, WANG Luyao, ZHUANG Qianfen. A ratiometric electrochemical sensor for dopamine detection based on hierarchical manganese dioxide nanoflower/multiwalled carbon nanotube nanocomposite modified glassy carbon electrode[J]. Journal of Alloys and Compounds, 2019, 802: 326-334. |
44 | DIVAGAR Muthukumar, SRIRAMPRABHA Ramasamy, PONPANDIAN Nagamony, et al. Highly selective and sensitive electrochemical detection of dopamine with hydrothermally prepared β-MnO2 nanostructures[J]. Materials Science in Semiconductor Processing, 2018, 83: 216-223. |
45 | SUNDAR Sasikala, VENKATACHALAM Ganesh, KWON Seong Jung. Biosynthesis of copper oxide (CuO) nanowires and their use for the electrochemical sensing of dopamine[J]. Nanomaterials, 2018, 8(10): 823-839. |
46 | CASTILLO Darwin, ONTANEDA Jorge, STASHANS Arvids. Geometry of dopamine adsorption on rutile (110) surface[J]. International Journal of Modern Physics B, 2014, 28(10): 1450071. |
47 | 林雪妮. 激光刻蚀石墨烯基传感器及其应用于痕量重金属检测[D]. 广州: 华南理工大学, 2019. |
LIN Xueni. Laser etched graphene-based sensor and its application in trace heavy metal detection[D]. Guangzhou: South China University of Technology, 2019. | |
48 | ARUL Rakesh, OOSTERBEEK Reece N, ROERSTON John, et al. The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement[J]. Carbon, 2016, 99: 423-431. |
49 | LIN Jian, PENG Zhiwei, LIU Yuanyue, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 2014, 5: 5-12. |
50 | XU Guangyuan, AYDEMIR Nihan, KILMARTIN Paul A, et al. Direct laser scribed graphene/PVDF-HFP composite electrodes with improved mechanical water wear and their electrochemistry[J]. Applied Materials Today, 2017, 8: 35-43. |
51 | 穆伊芳. 三维石墨烯材料的制备方法研究现状[J]. 化工设计通讯, 2020, 46(6): 150-166. |
MU Yifang. Research status of three-dimensional graphene material preparation methods[J]. Chemical Engineering Design Communications, 2020, 46(6): 150-166. | |
52 | ABADDI Mohammed AI, SASSO Luigi, DIMAKI Maria, et al. Fabrication of 3D nano/microelectrodes via two-photon-polymerization[J]. Microelectronic Engineering, 2012, 98: 378-381. |
53 | YANG Cheng, CAO Qun, PUTHONGKHAM Pumidech, et al. 3D-printed carbon electrodes for neurotransmitter detection[J]. Angewandte Chemie International Edition, 2018, 57(43): 14255-14259. |
54 | SANTOS Pãmyla L DOS, KATIC Vera, LOUREIRO Hugo C, et al. Enhanced performance of 3D printed graphene electrodes after electrochemical pre-treatment: role of exposed graphene sheets[J]. Sensors and Actuators B: Chemical, 2019, 281: 837-848. |
55 | KALINKE Cristiane, NEUMSTEIR Naile Vacilotto, APARECIDO Gabriel de Oliveira, et al. Comparison of activation processes for 3D printed PLA-graphene electrodes: electrochemical properties and application for sensing of dopamine[J]. Analyst, 2020, 145(4): 1207-1218. |
56 | 刘杰, 曾渊, 张俊, 等. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680. |
LIU Jie, ZENG Yuan, ZHANG Jun, et al. Preparation, structures and properties of three-dimensional graphene-based materials[J]. Progress in Chemistry, 2019, 31(5): 667-680. | |
57 | WANG Yanmin, DU Guojun, ZHU Lingbo, et al. Aligned open-ended carbon nanotube membranes for direct electrochemistry applications[J]. Sensors and Actuators B: Chemical, 2012, 174: 570-576. |
58 | 郇亚欢. 金属性过渡金属硫化物的可控制备和电催化应用[D]. 北京: 北京科技大学, 2020. |
HUAN Yahuan. Controllable syntheses and electrocatalytic applications of metallic transition metal dichalcogenides[D]. Beijing: University of Science & Technology Beijing, 2020. | |
59 | HWANG Jongkook, YAN Runyu, OSCHATZ Martin, et al. Solvent mediated morphology control of zinc MOFs as carbon templates for application in supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(46): 23521. |
60 | GAI Pengbo, ZHANG Hejing, CHEN Jinhua, et al. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on nitrogen doped porous carbon nanopolyhedra[J]. Journal of Materials Chemistry B, 2013, 1(21): 2742-2749. |
61 | XUE Yuhua, YU Dingshan, DAI Liming, et al. Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction[J]. Physical Chemistry Chemical Physics, 2013, 15(29): 12220-12226. |
62 | 夏昌奎, 黄剑锋, 曹丽云, 等. 三维形貌ZnO一维纳米结构的微波水热合成、机理及性能研究[J]. 稀有金属材料与工程, 2011, 40(S2): 1-5. |
XIA Changkui, HUANG Jianfeng, CAO Liyun, et al. Preparation, growth mechanism and property of zinc oxide one-dimensional nanostructure with three-dimensional morphology by microwave hydrothermal synthesis[J]. Rare Metal Materials and Engineering, 2011, 40(S2): 1-5. | |
63 | 张伟. MnO纳米棒/碳三维分级多孔网络的构筑及电化学性能[D]. 武汉: 武汉理工大学, 2016. |
ZHANG Wei. Construct and electrochemical performance of hierarchically three-dimension porous MnO nanorods/carbon network[D]. Wuhan: Wuhan University of Technology, 2016. | |
64 | DING Longjiang, ZHAO Minggang, MA Ye, et al. Triggering interface potential barrier: a controllable tuning mechanism for electrochemical detection[J]. Biosensors and Bioelectronics, 2016, 85: 869-875. |
[1] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[2] | 祖梅, 许海涛, 谢炜, 程海峰. 金属有机框架材料的水稳定性及吸水应用进展[J]. 化工进展, 2022, 41(8): 4254-4267. |
[3] | 段正洋, 胡柠檬, 李天国. 黄原酸改性交联面包酵母的制备及对Pb(Ⅱ)的吸附特性[J]. 化工进展, 2022, 41(7): 3925-3937. |
[4] | 王喜倩, 尹国强, 郭清兵, 何明. 多巴胺表面修饰角蛋白/聚乳酸纳米纤维膜的制备及性能[J]. 化工进展, 2022, 41(1): 373-381. |
[5] | 刘荣涛, 张诗洋, 黄兴文, 朋小康, 闵永刚. 聚苯胺/聚乳酸复合纳米纤维表面形貌对生物相容性的影响[J]. 化工进展, 2021, 40(8): 4406-4412. |
[6] | 马冠香, 杨令, 王亭杰. 聚多巴胺修饰纳米SiO2颗粒[J]. 化工进展, 2021, 40(12): 6729-6737. |
[7] | 陈龙,周红军,江海科,郝丽,陈铧耀,周新华. 叶面亲和型阿维菌素微胶囊的制备及pH响应性释放性能[J]. 化工进展, 2020, 39(1): 348-355. |
[8] | 郭石菲,谢锐,汪伟,巨晓洁,刘壮,褚良银. 负载银纳米催化剂的聚多巴胺基微球的高效催化性能[J]. 化工进展, 2020, 39(1): 166-173. |
[9] | 沈 丁1,李 犇1,杨绍斌1,唐树伟2. 锂离子电池聚阴离子型正极材料的第一性原理研究进展[J]. 化工进展, 2013, 32(04): 837-841. |
[10] | 朱 虹,芶 立. 掺硼金刚石薄膜电极的氨基化改性及电化学行为[J]. 化工进展, 2011, 30(12): 2688-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |