1 |
TAMAI T, WATANABE M, TERAMURA T, et al. Metal nanoparticle/polymer hybrid particles: the catalytic activity of metal nanoparticles formed on the surface of polymer particles by UV-irradiation[J]. Macromolecular Symposia, 2009, 282(1): 199-204.
|
2 |
ZHANG S F, WU W, XIAO X H, et al. Polymer-supported bimetallic Ag@AgAu nanocomposites: synthesis and catalytic properties[J]. Chemistry: an Asian Journal, 2012, 7(8): 1781-1788.
|
3 |
CEN L, NEOH K G, KANG E T. Gold nanocrystal formation on viologen-functionalized polymeric nanospheres[J]. Advanced Materials, 2005, 17(13): 1656-1661.
|
4 |
JANG W, TAYLOR IV R, EYIMEGWU P N, et al. In situ formation of gold nanoparticles within a polymer particle and their catalytic activities in various chemical reactions[J]. ChemPhysChem, 2019, 20(1): 70-77.
|
5 |
LIU R, SOSA C, YEH Y W, et al. A one-step and scalable production route to metal nanocatalyst supported polymer nanospheres via flash nanoprecipitation[J]. Journal of Materials Chemistry A, 2014, 2(41): 17286-17290.
|
6 |
YUN G, HASSAN Z, LEE J, et al. Highly stable, water-dispersible metal-nanoparticle-decorated polymer nanocapsules and their catalytic applications[J]. Angewandte Chemie: International Edition, 2014, 53(25): 6414-6418.
|
7 |
HORECHA M, KAUL E, HORECHYY A, et al. Polymer microcapsules loaded with Ag nanocatalyst as active microreactors[J]. Journal of Materials Chemistry A, 2014, 2(20): 7431-7438.
|
8 |
CHEN S Y, WANG L Y, DONG X, et al. Fabrication of monodispersed Au@Ag bimetallic nanorod-loaded nanofibrous membrane with fast thermo-responsiveness and its use as a smart free-standing SERS substrate[J]. RSC Advances, 2016, 6(54): 48479-48488.
|
9 |
KAUSHIK M, MOORES A. Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis[J]. Green Chemistry, 2016, 18(3): 622-637.
|
10 |
WANG Y W, KONG Q S, DING B B, et al. Bioinspired catecholic activation of marine chitin for immobilization of Ag nanoparticles as recyclable pollutant nanocatalysts[J]. Journal of Colloid and Interface Science, 2017, 505: 220-229.
|
11 |
CHENG P, LIU Y, YI Z B, et al. Insitu prepared nanosized Pt-Ag/PDA/PVA-co-PE nanofibrous membrane for highly-efficient catalytic reduction of p-nitrophenol[J]. Composites Communications, 2018, 9: 11-16.
|
12 |
CHEN C L, ZHU K R, CHEN K, et al. Synthesis of Ag nanoparticles decoration on magnetic carbonized polydopamine nanospheres for effective catalytic reduction of Cr(VI)[J]. Journal of Colloid and Interface Science, 2018, 526: 1-8.
|
13 |
MAO B Q, AN Q D, ZHAI B, et al. Multifunctional hollow polydopamine-based composites (Fe3O4/PDA@Ag) for efficient degradation of organic dyes[J]. RSC Advances, 2016, 6(53): 47761-47770.
|
14 |
XU P, LIANG X G, CHEN N N, et al. Magnetic separable chitosan microcapsules decorated with silver nanoparticles for catalytic reduction of 4-nitrophenol[J]. Journal of Colloid and Interface Science, 2017, 507: 353-359.
|
15 |
HU M X, GUO Q, LI J N, et al. Reduction of methylene blue with Ag nanoparticle-modified microporous polypropylene membranes in a flow-through reactor[J]. New Journal of Chemistry, 2017, 41(14): 6076-6082.
|
16 |
XU P, CEN C L, Chen N N, et al. Facile fabrication of silver nanoparticles deposited cellulose microfiber nanocomposites for catalytic application[J]. Journal of Colloid and Interface Science, 2018, 526: 194-200.
|
17 |
HU Y G, ZHAO T, ZHU P L, et al. Preparation of monodisperse polystyrene/silver composite microspheres and their catalytic properties[J]. Colloid and Polymer Science, 2012, 290(5): 401-409.
|
18 |
彭红, 刘洋, 张锦胜, 等. 银纳米粒子材料应用研究进展[J]. 化工进展, 2017, 36(7): 2525-2532.
|
|
PENG H, LIU Y, ZHANG J S, et al. Progress in utilization of silver nanoparticle material[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2525-2532.
|
19 |
许枭然, 周璘, 孙雪, 等. 银纳米粒子/聚多巴胺微球的制备及催化性能[J]. 浙江理工大学学报(自然科学版), 2016, 35(4): 548-553.
|
|
XU X R, ZHOU L, SUN X, et al. Preparation and catalytic performance of silver nanoparticles/polydopamine microspheres[J]. Journal of Zhejiang University of Science and Technology (Natural Sciences Edition), 2016, 35(4): 548-553.
|
20 |
ZHANG L, LIU Z, LIU L Y, et al. Novel smart microreactors equipped with responsive catalytic nanoparticles on microchannels[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 33137-33148.
|
21 |
ZHU W, WU Y Y, YAN C H, et al. Facile synthesis of mono-dispersed polystyrene (PS)/Ag composite microspheres via modified chemical reduction[J]. Materials, 2013, 6(12): 5625-5638.
|
22 |
MURUGAN E, JEBARANJITHAM J N. Synthesis and characterization of silver nanoparticles supported on surface-modified poly (N-vinylimidazale) as catalysts for the reduction of 4-nitrophenol[J]. Journal of Molecular Catalysis A: Chemical, 2012, 365: 128-135.
|
23 |
PENG S, GAO F, ZENG D, et al. Synthesis of Ag-Fe3O4 nanoparticles supported on polydopamine-functionalized porous cellulose acetate microspheres: catalytic and antibacterial applications[J]. Cellulose, 2018, 25(8): 4771-4782.
|
24 |
LU Y, MEI Y, DRECHSLER M, et al. Thermosensitive core-shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks[J]. Angewandte Chemie: International Edition, 2006, 45(5): 813-816.
|
25 |
LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430.
|
26 |
MA S D, Feng J, Qin W J, et al. CuFe2O4@PDA magnetic nanomaterials with a core-shell structure: synthesis and catalytic application in the degradation of methylene blue in water[J]. RSC Advances, 2015, 5(66): 53514-53523.
|
27 |
PELTON R. Temperature-sensitive aqueous microgels[J]. Advances in Colloid and Interface Science, 2000, 85(1): 1-33.
|
28 |
AI K L, LIU Y L, RUAN C P, et al. Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: a versatile platform for highly efficient oxygen-reduction catalysts[J]. Advanced Materials, 2013, 25(7): 998-1003.
|
29 |
JIANG X L, WANG Y L, LI M G. Selecting water-alcohol mixed solvent for synthesis of polydopamine nano-spheres using solubility parameter[J]. Scientific Reports, 2014, 4: 6070.
|
30 |
YE Q, ZHOU F, LIU W M. Bioinspired catecholic chemistry for surface modification[J]. Chemical Society Reviews, 2011, 40(7): 4244-4258.
|
31 |
WU Z K. Anti-galvanic reduction of thiolate-protected gold and silver nanoparticles[J]. Angewandte Chemie: International Edition, 2012, 51(12): 2934-2938.
|
32 |
钱国珠.银纳米粒子对芳香族硝基化合物的催化还原性能研究及功能性粒子的合成与应用[D]. 苏州: 苏州大学, 2007.
|
|
QIAN G Z. Catalytic reduction of nitro aromatic compounds with silver nanoparticles, sythesis and application of functionalized particles[D]. Suzhou: Soochow University, 2007.
|
33 |
TANG J T, SHI Z Q, BERRY R M, et al. Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin[J]. Industrial & Engineering Chemistry Research, 2015, 54(13): 3299-3308.
|
34 |
李绍芬, 刘邦荣, 黄璐. 反应工程[M]. 2版. 北京: 化学工业出版社, 2000: 20-21.
|
|
LI S F, LIU B R, HUANG L. Reaction engineering[M]. 2nd ed. Beijing: Chemical Industry Press, 2000: 20-21.
|