化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 556-570.DOI: 10.16085/j.issn.1000-6613.2021-2291
马云飞1(), 王建兵1, 贾超敏1, 邢懿心1, 柯述1, 张先2()
收稿日期:
2021-11-08
修回日期:
2022-01-10
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
张先
作者简介:
马云飞(1998—),男,硕士研究生,研究方向为臭氧氧化反应器建模与优化。E-mail:mayunf0330@163.com。
基金资助:
MA Yunfei1(), WANG Jianbing1, JIA Chaomin1, XING Yixin1, KE Shu1, ZHANG Xian2()
Received:
2021-11-08
Revised:
2022-01-10
Online:
2022-10-20
Published:
2022-11-10
Contact:
ZHANG Xian
摘要:
臭氧化技术可以实现对有机污染物的有效去除,同时兼具绿色环保、工艺流程简单等特点而被广泛应用,而臭氧化模型的构建可以实现对污染物减排的有效预测,对于臭氧化处理污水的工程应用意义重大。本文介绍了臭氧化技术的基本原理,并着重综述了臭氧氧化的动力学模型和反应器建模的研究进展。在臭氧氧化模型的建立中,臭氧的传质和反应是两个最重要的因素。本文首先讨论了臭氧的传质过程,并对其气液两相模型进行了阐述。然后针对忽略臭氧传质的液-液或液-固体系,并根据反应机理,分别总结了常规臭氧氧化、均相催化臭氧氧化和非均相催化臭氧氧化的动力学模型。在充分研究了臭氧氧化的动力学模型后,将其应用到具体反应器的建模中,并总结出模型建立的基本假设。最后指出现有模型存在的一些问题并给出相关的建议,提出臭氧化模型构建的出处是优化工业反应器,实现工程应用。
中图分类号:
马云飞, 王建兵, 贾超敏, 邢懿心, 柯述, 张先. 臭氧氧化动力学模型及反应器建模研究进展[J]. 化工进展, 2022, 41(S1): 556-570.
MA Yunfei, WANG Jianbing, JIA Chaomin, XING Yixin, KE Shu, ZHANG Xian. Recent progress of kinetics model and reactor modeling of ozonation[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 556-570.
催化臭氧体系 | 催化剂 | 催化机理/反应式 | 参考文献 |
---|---|---|---|
均相催化体系 | 亚铁离子Fe2+ | [ | |
非均相 催化体系 | 镍基层状双氢氧化物NiⅡ(OH)2 | [ | |
均相催化体系 | 亚钴离子Co2+ | [ | |
非均相 催化体系 | 负载贵金属催化剂 Ag-Fe2O4 | [ | |
非均相 催化体系 | 多金属氧化物 MnFe2O4 | [ |
表1 不同催化臭氧氧化体系处理有机物具体机理
催化臭氧体系 | 催化剂 | 催化机理/反应式 | 参考文献 |
---|---|---|---|
均相催化体系 | 亚铁离子Fe2+ | [ | |
非均相 催化体系 | 镍基层状双氢氧化物NiⅡ(OH)2 | [ | |
均相催化体系 | 亚钴离子Co2+ | [ | |
非均相 催化体系 | 负载贵金属催化剂 Ag-Fe2O4 | [ | |
非均相 催化体系 | 多金属氧化物 MnFe2O4 | [ |
表示参数 | 经验表达式 | 参考文献 |
---|---|---|
气相流速 | [ | |
气泡粒径 上升速度 进气流量 | [ | |
气相流速、微孔 孔径 | [ | |
水质指标pH | [ | |
进水流量、进气 流量 | [ | |
气泡粒径、上升 速度 | [ | |
气泡粒径、上升 速度 | [ |
表2 臭氧传质系数计算的经验公式
表示参数 | 经验表达式 | 参考文献 |
---|---|---|
气相流速 | [ | |
气泡粒径 上升速度 进气流量 | [ | |
气相流速、微孔 孔径 | [ | |
水质指标pH | [ | |
进水流量、进气 流量 | [ | |
气泡粒径、上升 速度 | [ | |
气泡粒径、上升 速度 | [ |
反应器运行 方式 | 流型 | 动力学公式 | 公式编号 |
---|---|---|---|
理想反应器 | PMF/PF/AMD | (24) | |
完全混合流 | (25) | ||
推流流型 | (26) | ||
非理想反应器 | 轴向扩散流型 | (27) | |
N级串联完全混合流 | (28) |
表3 不同类型反应器和流型对应的动力学方程
反应器运行 方式 | 流型 | 动力学公式 | 公式编号 |
---|---|---|---|
理想反应器 | PMF/PF/AMD | (24) | |
完全混合流 | (25) | ||
推流流型 | (26) | ||
非理想反应器 | 轴向扩散流型 | (27) | |
N级串联完全混合流 | (28) |
臭氧氧化系统 | 反应器 | 反应体系 | 两相模型/流型 | 参考文献 |
---|---|---|---|---|
O3/GO/TiO2/乙酸 | 0.5L电磁搅拌管式玻璃制半间歇式反应器 | 慢速动力学体系/非稳态条件 | 气相O3,液相O3、TOC(总有机碳)/气液两相均为完全混合流型 | [ |
O3/偶氮染料橙Ⅱ | 5L圆柱形气泡塔,高1m、直径0.095m,半批式操作 | 快速反应体系/非稳态条件 | 气液(O3、TOC)非理想混合/带回流的串联罐模型 | [ |
O3/TiO2/GAC/苯胺 | 2L电磁搅拌半间歇式反应器 | 慢速动力学体系/非稳态条件 | 液相O3、总有机碳/液相完全混合流型 | [ |
O3/Fe2+/垃圾渗滤液 | 改进的连续流管式反应器 | 恒容/稳态操作条件 | 液相TOC、化合物(O3、O2、Fe2+、Fe3+)/理想的推流流型 | [ |
O3/邻苯二酸二甲酯 | 玻璃柱半间歇式搅拌反应器,高1.2m,直径50mm | 慢速动力学体系/非稳态条件 | 气相O3,液相O3、有机物/气液两相均为完全混合流型 | [ |
O3/氯化物水溶液 | 连续搅拌釜反应器 | 慢速动力学体系/非稳态条件 | 涉及气液传质,气液相O3/液相完全混合流型 | [ |
O3/VisLED/GO/TiO2/药物 | 0.5L半批次磁性搅拌圆柱形反应器,直径6.2cm | 慢速、快速动力学体系/非稳态 | 气相O3,液相TOC/气液两相均为完全混合流型 | [ |
O3微气泡/药物 | 体积为1dm3的半间歇玻璃反应器 | 慢速动力学体系/稳态操作条件 | 气相O3,液相O3 /气液两相均为轴向扩散模型 | [ |
O3 /靛蓝三磺酸钾溶液 | 带有多孔陶瓷板气体分布器的气泡柱,长80cm、内径4cm | 快速动力学体系/稳态操作条件 | 考虑液相O3/液相为完全混合流型 | [ |
表4 具体反应器动力学建模实例
臭氧氧化系统 | 反应器 | 反应体系 | 两相模型/流型 | 参考文献 |
---|---|---|---|---|
O3/GO/TiO2/乙酸 | 0.5L电磁搅拌管式玻璃制半间歇式反应器 | 慢速动力学体系/非稳态条件 | 气相O3,液相O3、TOC(总有机碳)/气液两相均为完全混合流型 | [ |
O3/偶氮染料橙Ⅱ | 5L圆柱形气泡塔,高1m、直径0.095m,半批式操作 | 快速反应体系/非稳态条件 | 气液(O3、TOC)非理想混合/带回流的串联罐模型 | [ |
O3/TiO2/GAC/苯胺 | 2L电磁搅拌半间歇式反应器 | 慢速动力学体系/非稳态条件 | 液相O3、总有机碳/液相完全混合流型 | [ |
O3/Fe2+/垃圾渗滤液 | 改进的连续流管式反应器 | 恒容/稳态操作条件 | 液相TOC、化合物(O3、O2、Fe2+、Fe3+)/理想的推流流型 | [ |
O3/邻苯二酸二甲酯 | 玻璃柱半间歇式搅拌反应器,高1.2m,直径50mm | 慢速动力学体系/非稳态条件 | 气相O3,液相O3、有机物/气液两相均为完全混合流型 | [ |
O3/氯化物水溶液 | 连续搅拌釜反应器 | 慢速动力学体系/非稳态条件 | 涉及气液传质,气液相O3/液相完全混合流型 | [ |
O3/VisLED/GO/TiO2/药物 | 0.5L半批次磁性搅拌圆柱形反应器,直径6.2cm | 慢速、快速动力学体系/非稳态 | 气相O3,液相TOC/气液两相均为完全混合流型 | [ |
O3微气泡/药物 | 体积为1dm3的半间歇玻璃反应器 | 慢速动力学体系/稳态操作条件 | 气相O3,液相O3 /气液两相均为轴向扩散模型 | [ |
O3 /靛蓝三磺酸钾溶液 | 带有多孔陶瓷板气体分布器的气泡柱,长80cm、内径4cm | 快速动力学体系/稳态操作条件 | 考虑液相O3/液相为完全混合流型 | [ |
1 | PAL D B, GIRI D D. Remediation of industrial organic waste pollutants[M]//Sustainable environmental clean-up. Amsterdam: Elsevier, 2021: 295-314. |
2 | WANG J L, WANG S Z. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review[J]. Journal of Environmental Management, 2016, 182: 620-640. |
3 | 王长青, 张西华, 宁朋歌, 等. 含油废水处理工艺研究进展及展望[J]. 化工进展, 2021, 40(1): 451-462. |
WANG Changqing, ZHANG Xihua, NING Pengge, et al. Research advances and perspective on treatment processes for oily wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 451-462. | |
4 | AHMADI M, KAKAVANDI B, JAAFARZADEH N, et al. Catalytic ozonation of high saline petrochemical wastewater using PAC@FeⅡFe2 ⅢO4: optimization, mechanisms and biodegradability studies[J]. Separation and Purification Technology, 2017, 177: 293-303. |
5 | 罗艳红, 岳秀萍, 姜悦如, 等. 高级氧化技术降解吲哚的研究进展[J]. 化工进展, 2021, 40(2): 1025-1034. |
LUO Yanhong, YUE Xiuping, JIANG Yueru, et al. Recent progress of advanced oxidation processes in indole degradation[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1025-1034. | |
6 | LI J X, LI M, LI D, et al. Electrochemical pretreatment of coal gasification wastewater with Bi-doped PbO2 electrode: preparation of anode, efficiency and mechanism[J]. Chemosphere, 2020, 248: 126021. |
7 | ZHANG N Q, CHEN J Y, FANG Z Q, et al. Ceria accelerated nanoscale zerovalent iron assisted heterogenous Fenton oxidation of tetracycline[J]. Chemical Engineering Journal, 2019, 369: 588-599. |
8 | ZHANG M, ZHANG L, WANG H, et al. Hybrid electrocatalytic ozonation treatment of high-salinity organic wastewater using Ni-Ce/OMC particle electrodes[J]. Science of the Total Environment, 2020, 724: 138170. |
9 | AKKARI M, ARANDA P, BELVER C, et al. ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater[J]. Applied Clay Science, 2018, 156: 104-109. |
10 | DENG H. Ozonation mechanism of carbamazepine and ketoprofen in RO concentrate from municipal wastewater treatment: kinetic regimes, removal efficiency and matrix effect[J]. Science of the Total Environment, 2020, 717: 137150. |
11 | PENG B, BAO W J, WEI L L, et al. Highly active OMS-2 for catalytic ozone decomposition under humid conditions[J]. Petroleum Science, 2019, 16(4): 912-919. |
12 | 朱秋实, 陈进富, 姜海洋, 等. 臭氧催化氧化机理及其技术研究进展[J]. 化工进展, 2014, 33(4): 1010-1014. |
ZHU Qiushi, CHEN Jinfu, JIANG Haiyang, et al. A review of catalytic ozonation: mechanisms and efficiency[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 1010-1014. | |
13 | 童琴, 董亚梅, 赵昆峰, 等. 负载型稀土臭氧氧化催化剂在水处理中的应用进展[J]. 化工进展, 2019, 38(S1): 226-231. |
TONG Qin, DONG Yamei, ZHAO Kunfeng, et al. Application progress of supported rare-earth ozone oxidation catalysts in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 226-231. | |
14 | 白小霞, 杨庆, 丁昀, 等. 催化臭氧氧化处理难降解石化废水技术的研究进展[J]. 化工进展, 2016, 35(1): 263-268. |
BAI Xiaoxia, YANG Qing, DING Yun, et al. Research progress of catalytic ozonation process to treat refractory petrochemical wastewater[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 263-268. | |
15 | WANG J, DU C, QIAN F, et al. Enhanced treatment of pharmaceutical wastewater by an improved A2/O process with ozone mixed municipal wastewater[J]. Water, 2020, 12(10): 2771. |
16 | WU Z L, ABRAMOVA A, NIKONOV R, et al. Sonozonation (sonication/ozonation) for the degradation of organic contaminants: a review[J]. Ultrasonics Sonochemistry, 2020, 68: 105195. |
17 | KRISBIANTORO P A, KATO K, MAHARDIANI L, et al. Oxidation of ammonia nitrogen with ozone in water: a mini review[J]. Journal of the Indonesian Chemical Society, 2020, 3(1): 17. |
18 | 陈行行, 白智勇, 李群, 等. 臭氧氧化降解水中三氯乙烯的效能研究[J]. 环境科学学报, 2017, 37(12): 4586-4592. |
CHEN Hanghang, BAI Zhiyong, LI Qun, et al. Efficient degradation of trichloroethylene( TCE) in water by ozone oxidation[J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4586-4592. | |
19 | YASUI K, TUZIUTI T, KANEMATSU W. Mechanism of OH radical production from ozone bubbles in water after stopping cavitation[J]. Ultrasonics Sonochemistry, 2019, 58: 104707. |
20 | CHEN H, WANG J L. Catalytic ozonation of sulfamethoxazole over Fe3O4/Co3O4 composites[J]. Chemosphere, 2019, 234: 14-24. |
21 | POLAT D, BALCI İ, ÖZBELGE T A. Catalytic ozonation of an industrial textile wastewater in a heterogeneous continuous reactor[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 1860-1871. |
22 | SHAHMAHDI N, DEHGHANZADEH R, ASLANI H, et al. Performance evaluation of waste iron shavings (Fe0) for catalytic ozonation in removal of sulfamethoxazole from municipal wastewater treatment plant effluent in a batch mode pilot plant[J]. Chemical Engineering Journal, 2020, 383: 123093. |
23 | HUANG Y X, LUO M Y, XU Z H, et al. Catalytic ozonation of organic contaminants in petrochemical wastewater with iron-nickel foam as catalyst[J]. Separation and Purification Technology, 2019, 211: 269-278. |
24 | 徐军, 涂勇, 武倩, 等. 臭氧、臭氧/双氧水催化氧化深度处理化工废水[J]. 工业水处理, 2017, 37(4): 62-65. |
XU Jun, TU Yong, WU Qian, et al. Research on the ozone, ozone/hydrogen peroxide catalytic oxidation to the advanced treatment of chemical industrial wastewater[J]. Industrial Water Treatment, 2017, 37(4): 62-65. | |
25 | 孙慧萍, 吕文洲. 膨润土负载锌-钴催化臭氧处理模拟染料废水[J]. 纺织学报, 2019, 40(3): 118-124. |
SUN Huiping, Wenzhou LYU. Bentonite supported Zn-Co ozone catalyst for treatment of simulated dye wastewater[J]. Journal of Textile Research, 2019, 40(3): 118-124. | |
26 | 黄南, 李阳, 吴乾元, 等. 臭氧高效催化氧化处理城市污水反渗透浓水[J]. 工业水处理, 2021, 41(12): 56-59. |
HUANG Nan, LI Yang, WU Qianyuan, et al. Effective treatment of municipal wastewater reverse osmosis concentrate by catalytic ozonation technology[J]. Industrial Water Treatment, 2021, 41(12): 56-59. | |
27 | PSALTOU S, KARAPATIS A, MITRAKAS M, et al. The role of metal ions on p-CBA degradation by catalytic ozonation[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103324. |
28 | LI C H, JIANG F, Sun D Z, et al. Catalytic ozonation for advanced treatment of incineration leachate using (MnO2-Co3O4)/AC as a catalyst[J]. Chemical Engineering Journal, 2017, 325: 624-631. |
29 | WANG W L, HU H Y, LIU X, et al. Combination of catalytic ozonation by regenerated granular activated carbon (rGAC) and biological activated carbon in the advanced treatment of textile wastewater for reclamation[J]. Chemosphere, 2019, 231: 369-377. |
30 | ASGARI G, SEIDMOHAMMADI A, ESRAFILI A, et al. The catalytic ozonation of diazinon using nano-MgO@CNT@Gr as a new heterogenous catalyst: the optimization of effective factors by response surface methodology[J]. RSC Advances, 2020, 10(13): 7718-7731. |
31 | GHUGE S P, SARAHA A K. Catalytic ozonation for the treatment of synthetic and industrial effluents-Application of mesoporous materials: a review[J]. Journal of Environmental Management, 2018, 211: 83-102. |
32 | NAWROCKI J, KASPRZYK-HORDERN B. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 27-42. |
33 | HASSANI K EL, KALNINA D, TURKS M, et al. Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst[J]. Separation and Purification Technology, 2019, 210: 764-774. |
34 | PINES D S, RECKHOW D A. Effect of dissolved cobalt(Ⅱ) on the ozonation of oxalic acid[J]. Environmental Science & Technology, 2002, 36(19): 4046-4051. |
35 | ZHAO J Y, CAO J S, ZhAO Y J, et al. Catalytic ozonation treatment of papermaking wastewater by Ag-doped NiFe2O4: performance and mechanism[J]. Journal of Environmental Sciences, 2020, 97: 75-84. |
36 | WANG Z M, MA H, ZHANG C, et al. Enhanced catalytic ozonation treatment of dibutyl phthalate enabled by porous magnetic Ag-doped ferrospinel MnFe2O4 materials: performance and mechanism[J]. Chemical Engineering Journal, 2018, 354: 42-52. |
37 | YUAN L, SHEN J M, YAN P W, et al. Catalytic ozonation of 4-chloronitrobenzene by goethite and Fe2+-modified goethite with low defects: a comparative study[J]. Journal of Hazardous Materials, 2019, 365: 744-750. |
38 | FENG C Y, DIAO P. Nickel foam supported NiFe2O4-NiO hybrid: a novel 3D porous catalyst for efficient heterogeneous catalytic ozonation of azo dye and nitrobenzene[J]. Applied Surface Science, 2021, 541: 148683. |
39 | WHITMAN W G. The two film theory of gas absorption[J]. International Journal of Heat and Mass Transfer, 1962, 5(5): 429-433. |
40 | RODRÍGUEZ C, LOMBRAÑA J I, DE LUIS A, et al. Oxidizing efficiency analysis of an ozonation process to degrade the dye rhodamine 6G[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(3): 674-683. |
41 | JIANG L X, WANG C R, CHEN X Y, et al. Kinetic insights into removal of indole in aqueous solutions by ozonation: operating parameters, modeling and degradation pathways[J]. Research on Chemical Intermediates, 2019, 45(10): 4757-4778. |
42 | FLORES-PAYÁN V, HERRERA-LÓPEZ E J, NAVARRO-LABOULAIS J, et al. Parametric sensitivity analysis and ozone mass transfer modeling in a gas-liquid reactor for advanced water treatment[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 1270-1276. |
43 | 胡珊, NKUDEDE Emmanuel, 许小红, 等. 一个新型臭氧微气泡系统的臭氧液相传质特性研究[J]. 复旦学报(自然科学版), 2021, 60(6): 798-804. |
HU Shan, NKUDEDE Emmanuel, XU Xiaohong, al at. Study on ozone liquid mass transfer properties of a novel ozone microbubble system[J]. Journal of Fudan University(Nature Science), 2021, 60(6): 798-804. | |
44 | SEKOGUCHI Y, SADATOMI M, SEKOGUCHI K. Momentum and heat transfer in two-phase bubble flow Ⅱ. A comparison between experimental data and theoretical calculations[J]. International Journal of Multiphase Flow, 1981, 7(2): 167-177. |
45 | 戚圣琦. 臭氧接触氧化模型及臭氧接触池优化研究[D]. 北京: 清华大学, 2015. |
QI Shengqi. Study on the model and optimization of ozone contact tank[D]. Beijing: Tsinghua University, 2015. | |
46 | JIANG P, CHEN H T, BABCOCK R W, et al. Modeling ozone mass transfer in reclaimed wastewater[J]. Water Environment Research, 2009, 81(1): 57-68. |
47 | KAWAHARA A, SADATOMI M, MATSUYAMA F, et al. Prediction of micro-bubble dissolution characteristics in water and seawater[J]. Experimental Thermal & Fluid Science, 2009, 33(5): 883-894. |
48 | 李晓伟, 林诚, 蒋友华, 等. 微孔分布器对光催化臭氧氧化反应器传质的影响[J]. 环境工程学报, 2011, 5(5): 1101-1105. |
LI Xiaowei, LIN Cheng, JIANG Youhua, al at. Effect of titanium porous plates on mass transfer performance of photocatalytic ozonation reactors[J]. Chinese Journal of Environmental Engineering, 2011, 5(5): 1101-1105. | |
49 | PATEL S, AGARWAL R, MAJUMDER S K, et al. Kinetics of ozonation and mass transfer of pharmaceuticals degraded by ozone fine bubbles in a plant prototype[J]. Heat and Mass Transfer, 2020, 56: 385-397. |
50 | MITANI M M, KELLER A A, SANDALL O C, et al. Mass transfer of ozone using a microporous diffuser reactor system[J]. Ozone-Science & Engineering, 2005, 27(1): 45-51. |
51 | HIGBIE R. The rate of absorption of a pure gas into a still liquid during short periods of exposure[J]. Transactions of the American Institute of Chemical Engineers, 1935, 31: 365-389. |
52 | QI S Q, MAO Y Q, GUO X F, et al. Evaluating dissolved ozone in a bubble column using a discrete-bubble model[J]. Ozone: Science & Engineering, 2017, 39(1): 44-53. |
53 | OLAK-KUCHARCZYK M, LEDAKOWICZ S. How to avoid mass transfer limitations in ozonation kinetics of phenylphenol isomers[J]. Chemical and Process Engineering, 2016, 37(1):5-13. |
54 | BILIŃSKA L, ŻYŁŁA R, SMÓŁKA K, et al. Modeling of ozonation of reactive black 5 through a kinetic approach[J]. Fibres and Textiles in Eastern Europe, 2017, 25(5): 54-60. |
55 | CUI Y R, WU Q, XIAO S N, et al. Optimum ozone dosage of preozonation and characteristic change of refractory organics in landfill leachate[J]. Ozone: Science & Engineering, 2014, 36(5): 427-434. |
56 | ELOVITZ M S, VON GUNTEN U. Hydroxyl radical/ozone ratios during ozonation processes. Ⅰ. The rct concept[J]. Ozone: Science & Engineering, 1999, 21(3): 239-260. |
57 | LEE Y, VON GUNTEN U. Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: reaction kinetics, transformation products, and changes of biological effects[J]. Environmental Science Water Research & Technology, 2016, 2(3): 421-442. |
58 | LEE Y, KOVALOVA L, MCARDELL C S, et al. Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent[J]. Water Research, 2014, 64: 134-148. |
59 | QIN W L, YUAN X J, SUN L, et al. Insights into the activation of ozonation by hydroxylamine: Influential factors, degradation mechanism and reaction kinetics[J]. Journal of Hazardous Materials, 2019, 373: 600-607. |
60 | STAPF M, MIEHE U, JEKEL M. Application of online UV absorption measurements for ozone process control in secondary effluent with variable nitrite concentration[J]. Water Research, 2016, 104: 111-118. |
61 | CHYS M, AUDENAERT W T M, DENIERE E, et al. Surrogate-based correlation models in view of real-time control of ozonation of secondary treated municipal wastewater-model development and dynamic validation[J]. Environmental Science & Technology, 2017, 51(24): 14233-14243. |
62 | GUO Y, ZHANG Y X, YU G, et al. Revisiting the role of reactive oxygen species for pollutant abatement during catalytic ozonation: the probe approach versus the scavenger approach[J]. Applied Catalysis B: Environmental, 2021, 280: 119418. |
63 | WANG J L, CHEN H. Catalytic ozonation for water and wastewater treatment: recent advances and perspective[J]. The Science of the Total Environment, 2020, 704: 135249. |
64 | GUO Y, ZHAN J H, YU G, et al. Evaluation of the concentration and contribution of superoxide radical for micropollutant abatement during ozonation[J]. Water Research, 2021, 194: 116927. |
65 | KWON M, KYE H, JUNG Y, et al. Performance characterization and kinetic modeling of ozonation using a new method: R O H , O 3 concept[J]. Water Research, 2017, 122: 172-182. |
66 | CRUZ-ALCALDE A, ESPLUGAS S, SANS C. Abatement of ozone-recalcitrant micropollutants during municipal wastewater ozonation: kinetic modelling and surrogate-based control strategies[J]. Chemical Engineering Journal, 2019, 360: 1092-1100. |
67 | KIM M S, CHA D, LEE K M, et al. Modeling of ozone decomposition, oxidant exposures, and the abatement of micropollutants during ozonation processes[J]. Water Research, 2020, 169: 115230. |
68 | GUO Y, WANG H, WANG B, et al. Prediction of micropollutant abatement during homogeneous catalytic ozonation by a chemical kinetic model[J]. Water Research, 2018, 142: 383-395. |
69 | RAMOS R M B, BIZ A P, TAVARES D A, et al. Homogeneous catalytic ozonation of lipids involving Fe2+ and Mn2+: an experimental and modeling study[J]. CLEAN: Soil, Air, Water, 2020, 48(7/8): 1900430. |
70 | WANG S, ZHU G, YU Z, et al. Mineralization of petrochemical wastewater after biological treatment by ozonation catalyzed with divalent iron tartaric acid chelate[J]. Water Science and Technology, 2020, 81(10): 2211-2220. |
71 | MALVESTITI J A, CRUZ-ALCALDE A, LÓPEZ-VINENT N, et al. Catalytic ozonation by metal ions for municipal wastewater disinfection and simulataneous micropollutants removal[J]. Applied Catalysis B: Environmental, 2019, 259: 118104. |
72 | RAJAH Z, GUIZA M, SOLÍS R R, et al. Clopyralid degradation using solar-photocatalytic/ozone process with olive stone activated carbon[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102900. |
73 | CHEN Z, FANG J Y, FAN C, et al. Oxidative degradation of N-nitrosopyrrolidine by the ozone/UV process: kinetics and pathways[J]. Chemosphere, 2016, 150: 731-739. |
74 | BERTAGNA SILVA D, CRUZ-ALCALDE A, SANS C, et al. Performance and kinetic modelling of photolytic and photocatalytic ozonation for enhanced micropollutants removal in municipal wastewaters[J]. Applied Catalysis B: Environmental, 2019, 249: 211-217. |
75 | ZHAO W R, LIAO Q W, ZHANG J, et al. Oxidation of cationic Red X-GRL by ozonation combined with UV radiation in aqueous solution: degradation, kinetics, and modeling[J]. Chemical Engineering Journal, 2011, 171(2): 628-639. |
76 | FIGUEREDO M, RODRÍGUEZ E M, RIVAS J, et al. Kinetic model basis of ozone/light-based advanced oxidation processes: a pseudoempirical approach[J]. Environmental Science: Water Research & Technology, 2020, 6(4): 1176-1185. |
77 | LUO X, SU T M, XIE X L, et al. The adsorption of ozone on the solid catalyst surface and the catalytic reaction mechanism for organic components[J]. ChemistrySelect, 2020, 5(48): 15092-15116. |
78 | GUO Y, ZHU S, WANG B, et al. Modelling of emerging contaminant removal during heterogeneous catalytic ozonation using chemical kinetic approaches[J]. Journal of Hazardous Materials, 2019, 380: 120888. |
79 | 李莹. 非均相催化臭氧氧化降解草酸的实验研究[D]. 吉林: 吉林大学, 2011. |
LI Ying. Degradation of oxalic acid by heterogeneous catalytic ozonation[D]. Jilin: Jilin University, 2011. | |
80 | ZHANG J L, ZHUANG T, LIU S J, et al. Catalytic ozonation of phenol enhanced by mesoporous MnO2 prepared through nanocasting method with SBA-15 as template[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103967. |
81 | 蔡少卿. 非均相催化臭氧处理制药废水的研究[D]. 浙江: 浙江工业大学, 2011. |
CAI Shaoqing. Heterogeneous catalytic ozone oxidation for pharmaceutical wastewater treatment[D]. Zhejiang: College of Biological & Environmental Engineering, 2011. | |
82 | FERREIRO C, VILLOTA N, DE LUIS A, et al. Analysis of the effect of the operational conditions in a combined adsorption–ozonation process with granular activated carbon for the treatment of phenol wastewater[J]. Reaction Chemistry & Engineering, 2020, 5(4): 760-778. |
83 | FERREIRO C, VILLOTA N, LOMBRAÑA J I, et al. Heterogeneous catalytic ozonation of aniline-contaminated waters: a three-phase modelling approach using TiO2/GAC[J]. Water, 2020, 12(12): 3448. |
84 | KHATAEE A, FATHINIA M, RAD T S. Kinetic modeling of nalidixic acid degradation by clinoptilolite nanorod-catalyzed ozonation process[J]. RSC Advances, 2016, 6(50): 44371-44382. |
85 | JANSEN R H S, DE RIJK J W, ZWIJNENBURG A, et al. Hollow fiber membrane contactors—A means to study the reaction kinetics of humic substance ozonation[J]. Journal of Membrane Science, 2005, 257(1/2): 48-59. |
86 | LUCAS M S, PERES J A, LAN B Y, et al. Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor[J]. Water Research, 2009, 43(6): 1523-1532. |
87 | ZAROK D M M. Experimental and kinetic modelling of multicomponent gas/liquid ozone reactions in aqueous phase: experimental investigation and Matlab modelling of the ozone mass transfer and multicomponent chemical reactions in a well agitated semi-batch gas/liquid reactor[D]. Bradford: University of Bradford, 2010: 199. |
88 | FERRE-ARACIL J, VALCÁRCEL Y, NEGREIRA N, et al. Ozonation of hospital raw wastewaters for cytostatic compounds removal. Kinetic modelling and economic assessment of the process[J]. Science of the Total Environment, 2016, 556: 70-79. |
89 | LISCHESKE J J, STICKEL J J. A two-phase substrate model for enzymatic hydrolysis of lignocellulose: application to batch and continuous reactors[J]. Biotechnology for Biofuels, 2019, 12: 299. |
90 | SAAD M. Comparative study of different mathematical models of ozone mass transfer in a kenics static mixer[C]// ICCPGE2016, Alkhoms, Libia: Al-Mergib University. 2016. |
91 | KIM J H, TOMIAK R B, MARIÑAS B J. Inactivation of cryptosporidium oocysts in a pilot-scale ozone bubble-diffuser contactor. Ⅰ: model development[J]. Journal of Environmental Engineering, 2002, 128(6): 514-521. |
92 | EROL F, ÖZBELGE T A, ÖZBELGE H Ö. Modeling of catalytic ozonation process in a three-phase reactor[J]. Journal of Environmental Science and Health, Part A, 2009, 44(3): 295-306. |
93 | BELTRÁN F J, CHECA M. Comparison of graphene oxide titania catalysts for their use in photocatalytic ozonation of water contaminants: application to oxalic acid removal[J]. Chemical Engineering Journal, 2020, 385: 123922. |
94 | TOKUMURA M, KATOH T, OHATA H, et al. Dynamic modeling and simulation of ozonation in a semibatch bubble column reactor: decolorization and mineralization of azo dye orange Ⅱ by ozone[J]. Industrial & Engineering Chemistry Research, 2009, 48(17): 7965-7975. |
95 | DE BRITO R, FILHO H J I, AGUIAR L G, et al. Degradation kinetics of landfill leachate by continuous-flow catalytic ozonation[J]. Industrial & Engineering Chemistry Research, 2019, 58(23): 9855-9863. |
96 | WANG J B, XIA Z L, CAO Z H, et al. Mathematical model involving chemical reaction and mass transfer for the ozonation of dimethyl phthalate in water in a bubble column reactor[J]. Journal of Advanced Oxidation Technologies, 2017, 20(1). |
97 | LEVANOV A V, ISAIKINA O Y. Mechanism and kinetic model of chlorate and perchlorate formation during ozonation of aqueous chloride solutions[J]. Industrial & Engineering Chemistry Research, 2020, 59(32): 14278-14287. |
98 | BELTRÁN F J, CHECA M, RIVAS J, et al. Modeling the mineralization kinetics of visible led graphene oxide/titania photocatalytic ozonation of an urban wastewater containing pharmaceutical compounds[J]. Catalysts, 2020, 10(11): 1256. |
99 | PATEL S, AGARWAL R, MAJUMDER S K, et al. Kinetics of ozonation and mass transfer of pharmaceuticals degraded by ozone fine bubbles in a plant prototype[J]. Heat and Mass Transfer, 2020, 56(2): 385-397. |
100 | ĐEKOVIĆ-ŠEVIĆ M, BOŠKOVIĆ-VRAGOLOVIĆ N, GARIĆ-GRULOVIĆ R, et al. Experimental study on the ozone absorption accompanied by instantaneous chemical reaction[J]. Chemical Engineering Communications, 2018, 205(5): 571-580. |
[1] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[2] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[3] | 汪鹏, 张洋, 范兵强, 何登波, 申长帅, 张贺东, 郑诗礼, 邹兴. 高碳铬铁盐酸浸出过程工艺及动力学[J]. 化工进展, 2023, 42(S1): 510-517. |
[4] | 刘阳, 王云刚, 修浩然, 邹立, 白彦渊. 基于动力学分析的核桃壳最佳炭化工艺[J]. 化工进展, 2023, 42(S1): 94-103. |
[5] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[6] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[7] | 王俊杰, 潘艳秋, 牛亚宾, 俞路. 分子水平催化重整装置模型构建及应用[J]. 化工进展, 2023, 42(7): 3404-3412. |
[8] | 赵毅, 杨臻, 张新为, 王刚, 杨旋. 不同裂缝损伤和愈合温度条件下沥青自愈合行为的分子模拟[J]. 化工进展, 2023, 42(6): 3147-3156. |
[9] | 詹咏, 王慧, 韦婷婷, 朱星宇, 王先恺, 陈思思, 董滨. Mn2+强化臭氧调理对生物处理工艺的污泥原位减量效果[J]. 化工进展, 2023, 42(6): 3253-3260. |
[10] | 曾天续, 张永显, 严渊, 刘宏, 马娇, 党鸿钟, 吴新波, 李维维, 陈永志. 羟胺对硝化菌活性及其动力学参数的影响[J]. 化工进展, 2023, 42(6): 3272-3280. |
[11] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
[12] | 朱昊, 刘汉飞, 高源, 白蓉蓉, 倪嵩波, 黄益平, 李庆同, 李小东, 韩卫清. 催化臭氧化体系射流曝气系统参数优化及苯酚阶段氧化分析[J]. 化工进展, 2023, 42(5): 2717-2723. |
[13] | 张成松, 张静, 龚斌, 李明洋, 袁佳新, 李宏业. 自吸射流柔性搅拌桨振动特性[J]. 化工进展, 2023, 42(4): 1728-1738. |
[14] | 葛伟童, 廖亚龙, 李明原, 嵇广雄, 郗家俊. Pd-Fe/MWCNTs双金属催化剂制备及其脱氯动力学[J]. 化工进展, 2023, 42(4): 1885-1894. |
[15] | 李芸, 崔楠, 熊星星, 黄志远, 王东亮, 许丹, 李军, 李泽兵. 稀土Er(Ⅲ)对短程硝化性能的影响及其抑制动力学特性[J]. 化工进展, 2023, 42(3): 1659-1668. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |