1 |
ZHANG S M, ZHAO C H. Stationarity test and Bayesian monitoring strategy for fault detection in nonlinear multimode process[J]. Chemical & Intelligent Laboratory Systems, 2017, 168: 45-61.
|
2 |
GE Z Q. Review on data-driven modeling and monitoring for plant-wide industrial process[J]. Chemical & Intelligent Laboratory Systems, 2017, 171: 16-25.
|
3 |
文成林, 吕菲亚, 包哲静,等. 基于数据驱动的微小故障诊断方法综述[J]. 自动化学报, 2016, 42(9): 1285-1299.
|
|
WEN C L, LÜ F Y, BAO Z J, et al. A review of data driven-based incipient fault diagnosis[J]. Acta Automatica Sinica, 2016, 42(9): 1285-1299.
|
4 |
AMAR M, GONDAL I, WILSON C. Vibration spectrum imaging: a novel bearing fault classification approach[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 494-502.
|
5 |
LUO L J, BAO S Y, MAO J F, et al. Industrial process monitoring based on knowledge data integrated sparse model and two-level deviation plots[J]. Industrial & Engineering Chemistry Research, 2018, 57(2): 611-622.
|
6 |
ZHU J L, GE Z Q, SONG Z H. Distributed parallel PCA for modeling and monitoring of large-scale plant-wide processes with big data[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 1877-1885.
|
7 |
QI L J, DU W Y, ZHANG Y W. Semi-supervised kernel partial least squares fault detection and identification approach with application to HGPWLTP[J]. Journal of Chemometrics, 2016, 30(7): 377-385.
|
8 |
CAI L F, TIAN X M, CHEN S. A process monitoring method based on noisy independent component analysis[J]. Neurocomputing, 2014, 127(1): 231-246.
|
9 |
DONG Y N, QIN S J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring[J]. Journal of Process Control, 2018, 67: 1-11
|
10 |
CHERRY G A, QIN S J. Multi-block principal component analysis based on a combined index for semiconductor fault detection and diagnosis[J]. IEEE Transactions on Semiconductor Manufacturing, 2006, 19(2): 159-172.
|
11 |
LEE J M, YOO C K, LEE I B. Fault detection of batch processes using multiway kernel principal component analysis[J]. Computers & Chemical Engineering, 2004, 28(9): 1837-1847.
|
12 |
WOLD S. Exponentially weighted moving principal components analysis and projections to latent structures[J]. Chemometrics & Intelligent Laboratory Systems, 1994, 23(1): 149-161.
|
13 |
JI H Q, HE X, SHANG J, et al. Incipient fault detection with smoothing techniques in statistical process monitoring[J]. Control Engineering Practice, 2017, 62: 11-21.
|
14 |
尚骏, 陈茂银, 周东华. 基于变元统计分析的微小故障检测[J]. 上海交通大学学报, 2015, 49(6): 799-805.
|
|
SHANG Jun, CHEN Maoyin, ZHOU Donghua. Incipient fault detection using transformed component statistical analysis[J]. Journal of Shanghai Jiaotong University, 2015, 49(6): 799-805
|
15 |
HARMOUCHE J, DELPHA C, DIALLO D. Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: Part Ⅰ[J]. Signal Processing, 2014, 94: 278-287.
|
16 |
HARMOUCHE J, DELPHA C, DIALLO D. Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: Part Ⅱ[J]. Signal Processing, 2015, 109(1): 334-344.
|
17 |
CHEN H T, JIANG B, LU N Y. An improved incipient fault detection method based on Kullback Leibler divergence[J]. ISA Transaction, 2018, 79: 127-136
|
18 |
GE Z Q, YANG C J, SONG Z H. Improved kernel PCA-based monitoring approach for nonlinear processes[J]. Chemical Engineering Science, 2009, 64(9): 2245-2255.
|
19 |
CHEN H T, JIANG B, LU N Y, et al. Multi-mode kernel principal component analysis-based incipient fault detection for pulse width modulated inverter of China railway high-speed 5[J]. Advances in Mechanical Engineering, 2017, 9(10): 1-12.
|
20 |
CHEN H T, JIANG B, DING S X, et al. Probability-relevant incipient fault detection and diagnosis methodology with applications to electric drive systems[J]. IEEE Transactions on Control Systems Technology, 2018,27(6): 1-8.
|
21 |
DENG X G, TIAN X M, CHEN S, et al. Fault discriminant enhanced kernel principal component analysis incorporating prior fault information for monitoring nonlinear processes[J]. Chemom. Intell. Lab. Syst., 2017, 162: 21-34.
|
22 |
DENG X G, WANG L. Modified kernel principal component analysis using double-weighted local outlier factor and its application to nonlinear process monitoring[J]. ISA Transactions, 2018, 72: 218-228.
|
23 |
FAN J C, QIN S J, WANG Y Q. Online monitoring of nonlinear multivariate industrial processes using filtering KICA-PCA[J]. Control Engineering Practice, 2014, 22(1): 205-216.
|
24 |
DENG X G, TIAN X M, CHEN S, et al. Nonlinear process fault diagnosis based on serial principal component analysis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(3): 560-572.
|
25 |
LEE J M, YOO C K, CHOI S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1): 223-234.
|
26 |
SCHOLKOPF B, SMOLA A, MULLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319.
|
27 |
KULLBACK S, LEIBLER R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1): 79-86.
|
28 |
BASSEVILLE M. Distance measures for signal processing and pattern recognition[J]. Signal Processing, 1989, 18(4): 349-369.
|
29 |
ROSENBLATT M. Curve estimates[J]. Annals of Mathematical Statistics, 1971, 42(6):1815-1842.
|
30 |
PRAZEN E. On estimation of a probability density function and mode[J]. Ann. Math. Statis., 1962, 33(3): 1065-1076.
|
31 |
DONG D, MCAVOY T J. Nonlinear principal component analysis-based on principal curves and neural networks[J].Computers & Chemical Engineering, 1996, 20(1): 65-78.
|
32 |
SONG B, SHI H B. Temporal-spatial global locality projections for multimode process monitoring[J]. IEEE Access, 2018, 6: 9740-9749.
|