1 |
LEE S M, OH S H, AHN J P, et al . Electrochemical properties of ZrO2-coated LiNi0.8Co0.2O2 cathode materials[J]. Journal of Power Sources, 2006, 159(2): 1334-1339.
|
2 |
唐昌平, 应皆荣, 雷敏, 等 . 控制结晶-微波碳热还原法制备高密度LiFePO4/C[J]. 电化学, 2006, 12(2): 188-190.
|
|
TANG C P , YING J R , LEI M , et al . High density LiFePO4/C synthesized by controlled crystallization and microwave carbon thermal reduction[J]. Electrochemistry, 2006, 12(2): 188-190.
|
3 |
赖飞燕 . 尖晶石型锰系锂离子电池正极材料表面包覆及其应用研究[D]. 桂林: 广西师范大学, 2018.
|
|
LAI F Y . Study on surface coating and application of spinel Mn-based cathode materials for lithium-ion batteries[D]. Guilin: Guangxi Normal University,2018.
|
4 |
袁晶 . 锂离子电池正极材料LiNi0 . 6Co0.2Mn 0 .2O 2的合成与改性[D]. 合肥: 合肥工业大学, 2017.
|
|
YUAN J . Synthesis and modification of LiNi0 . 6Co0.2Mn 0 .2O 2 as a cathode material for lithium-ion batteries[D]. Hefei: Hefei University of Technology, 2017.
|
5 |
吕庆文 . 高容量镍基正极材料LiNi0 . 9Mn0.1O 2的合成及改性研究[D]. 赣州: 江西理工大学, 2017.
|
|
LÜ Q W . Synthesis and modification of high capacity nickel based cathode material LiNi0 . 9Mn0.1O 2 [D].Ganzhou: Jiangxi University of Science and Technology, 2017.
|
6 |
宋刘斌, 李新宇, 肖忠良, 等 . 锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2研究进展[J]. 功能材料, 2017, 48(12):12023-12029, 12035.
|
|
SONG L B , LI X Y , XIAO Z L , et al . Research progress of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries[J]. Journal of Functional Materials, 2017, 48(12):12023-12029, 12035.
|
7 |
PISTOIA G . Lithium-ion batteries: advances and applications[M].New South Wales: Newnes, 2013: 34-214.
|
8 |
YUAN J , LIU X , ZHANG H .Lithium-ion batteries: advanced materials and technologies[M]. Boca Raton: CRC Press, 2011: 11-145.
|
9 |
GOONETILLEKE D , SHARMA N , PANG W K , et al . Structural evolution and high-voltage structural stability of Li(Ni x Mn y Co z )O2 electrodes[J]. Chemistry of Materials, 2019, 31(2): 376-386.
|
10 |
LIU S , WU H , HUANG L , et al . Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2016, 674: 447-454.
|
11 |
LI L J , CHEN Z Y , ZHANG Q B , et al . A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(2): 894-904.
|
12 |
RONG H , XU M , XIE B , et al . Performance improvement of graphite/LiNi0.4Co0.2Mn0.4O2 battery at high voltage with added tris (trimethylsilyl) phosphate[J]. Journal of Power Sources, 2015, 274: 1155-1161.
|
13 |
LV C , PENG Y , YANG J , et al . Electrospun Nb-doped LiNi0.4Co0.2Mn0.4O2 nanobelts for lithium-ion batteries[J]. Inorganic Chemistry Frontiers, 2018, 5(5): 1126-1132.
|
14 |
CHEN Z , KIM G T , CHAO D , et al . Toward greener lithium-ion batteries: aqueous binder-based LiNi0.4Co0.2Mn0.4O2 cathode material with superior electrochemical performance[J]. Journal of Power Sources, 2017, 372: 180-187.
|
15 |
MIZUNO Y , ZETTSU N , YUBUTA K , et al . Fabrication of LiCoO2 crystal layers using a flux method and their application for additive-free lithium-ion rechargeable battery cathodes, cryst[J]. Growth Des., 2014, 14: 1882-1887.
|
16 |
ZETTSU N , NISHIKAWA K , YUBUTA K , et al . Flux growth of hexagonal cylindrical LiCoO2 crystals surrounded by Li-ion conducting preferential facets and their electrochemical properties studied by single-particle measurements[J]. Mater. Chem. A, 2015, 3: 17016-17021.
|
17 |
SATYANARAYANA M , JAMES J , VARADARAJU U V . Electrochemical performance of LiNi0.4Co0.2Mn0.4O2 prepared by different molten salt flux: LiNO3-LiCl and LiNO3-KNO3 [J]. Applied Surface Science, 2017, 418: 72-78.
|
18 |
HILDEBRAND S , RHEINFELD A , FRIESEN A , et al . Thermal analysis of LiNi0.4Co0.2Mn0.4O2/mesocarbon microbeads cells and electrodes: state-of-charge and state-of-health influences on reaction kinetics[J]. Journal of the Electrochemical Society, 2018, 165(2): A104-A117.
|
19 |
CHO Y H, JANG D , YOON J , et al . Thermal stability of charged LiNi0.5Co0.2Mn0.3O2 cathode for Li-ion batteries investigated by synchrotron based in situ X-ray diffraction[J]. Journal of Alloys and Compounds, 2013, 562: 219-223.
|
20 |
BöRNER M , HORSTHEMKE F , KOLLMER F , et al . Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes[J]. Journal of Power Sources, 2016, 335: 45-55.
|
21 |
KIM N Y , YIM T, SONG J H , et al . Microstructural study on degradation mechanism of layered LiNi0.6Co0.2Mn0.2O2 cathode materials by analytical transmission electron microscopy[J]. Journal of Power Sources, 2016, 307: 641-648.
|
22 |
AURBACH D , SRUR-LAVI O , GHANTY C , et al . Studies of aluminum-doped LiNi0.5Co0.2Mn0.3O2: electrochemical behavior, aging, structural transformations, and thermal characteristics[J]. Journal of the Electrochemical Society, 2015, 162(6): A1014-A1027.
|
23 |
DIXIT M , KOSA M , LAVI O S , et al . Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles[J]. Physical Chemistry Chemical Physics, 2016, 18(9): 6799-6812.
|
24 |
郑卓, 吴振国, 向伟, 等 . 高倍率球形锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2 的制备及其电化学性能研究[J]. 化学学报, 2017, 75(5): 501-507.
|
|
ZHENG Z , WU Z G , XIANG W , et al . Preparation and electrochemical performance of high rate spherical layered LiNi0.5Co0.2Mn0.3O2 cathode material for lithium-ion batteries[J]. Acta Chimica Sinica, 2017, 75(5): 501-507.
|
25 |
WANG L C , LI L , ZHANG X X , et al . Compound-hierarchical-sphere LiNi0.5Co0.2Mn0.3O2: synthesis, structure, and electrochemical characterization[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32120-32127.
|
26 |
YUE P , WANG Z , LI X , et al . The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution[J]. Electrochimica Acta, 2013, 95: 112-118.
|
27 |
LIANG L , DU K , LU W , et al . Synthesis and characterization of concentration-gradient LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2014, 613: 296-305.
|
28 |
LEE Y S, SHIN W K , KANNAN A G , et al . Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer[J]. ACS Appl. Mater. Interfaces, 2015, 7(25): 13944-13951.
|
29 |
RAZMJOO K M A , PAKNAHAD P , GHORBANZADEH M . Improvement of the electrochemical performance of nickel rich LiNi0.5Co0.2Mn0.3O2 cathode material by reduced graphene oxide/SiO2 nanoparticles double-layer coating[J]. New Journal of Chemistry, 2019, 43: 2766-2775.
|
30 |
GAO H , CAI J , XU J L , et al . Surface modification for suppressing interfacial parasitic reactions of a nickel-rich lithium-ion cathode[J]. Chemistry of Materials, 2019, 31(8): 2723-2730.
|
31 |
HUANG Z , WANG Z , ZHENG X , et al . Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Electrochimica Acta, 2015, 182: 795-802.
|
32 |
HUANG Z , WANG Z , JING Q , et al . Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material[J]. Electrochimica Acta, 2016, 192: 120-126.
|
33 |
DAI S , YUAN M , WANG L , et al . Ultrathin-Y2O3-coated LiNi0.8Co0.1Mn0.1O2 as cathode materials for Li-ion batteries: synthesis, performance and reversibility[J]. Ceramics International, 2019, 45(1): 674-680.
|
34 |
JOE Y C, PRASANNA K , KANG S H , et al . Preparation and characterization of the LiNi0.8Co0.1Mn0.1O2 cathode active material by electrophoretic deposition[J]. Nanosci. Nanotechnol., 2018, 18(9): 6494-6498.
|
35 |
HEO K, LEE J S, KIM H S , et al . Ionic conductor-LiNi0.8Co0.1Mn0.1O2 composite synthesized by simultaneous Co-precipitation for use in lithium ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(13): A2955-A2960.
|
36 |
LI Q , DANG R , CHEN M , et al . Synthesis method for long cycle life lithium-ion cathode material: nickel-rich core-shell LiNi0.8Co0.1Mn0.1O2 [J]. ACS Appl. Mater. Interfaces, 2018, 10(21): 17850-17860.
|
37 |
GAO S , CHENG Y T , SHIRPOUR M . Effects of cobalt deficiency on nickel-rich layered LiNi0.8Co0.1Mn0.1O2 positive electrode materials for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(1): 982-989.
|
38 |
LI W D , ASL H Y, XIE Q , et al . Collapse of LiNi1- x - y Co x Mn y O2 lattice at deep charge irrespective of nickel content in lithium-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(13): 5097-5101.
|
39 |
XI Y , LIU Y , ZHANG D , et al . Comparative study of the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 and LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion batteries[J]. Solid State Ionics, 2018, 327: 27-31.
|
40 |
IQBAL A , CHEN L , CHEN Y , et al . Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO-C composite anode[J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(12): 1473-1481.
|
41 |
XIAO Z , HU C , SONG L , et al . Modification research of LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 as a cathode material for lithium-ion battery[J]. Ionics, 2017, 24(1): 91-98.
|
42 |
GAN Q M , QIN N , ZHU Y H , et al . Polyvinylpyrrolidone-induced uniform surface conductive polymers coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11 (13): 12594-12604.
|
43 |
SONN L B , LIU J , XIAO Z L , et al . Thermoeletrochemical study on LiNi0.8Co0.1Mn0.1O2 with in situ modification of Li2ZrO3 [J]. Ionics, 2018, 24(11): 3325-3335.
|
44 |
吕艳卓, 王霄鹤, 刘建武, 等 . LiNi0.4Co0.2Mn0.4O2与LiMn2O4共混正极材料电化学性能[J]. 哈尔滨工业大学学报, 2016, 48(8): 161-165, 170.
|
|
LV Y Z , WANG X H , LIU J W , et al . Electrochemical performances of the co-mixed LiNi0.4Co0.2Mn0.4O2 and LiMn2O4 as the positive-electrode material of lithium ion battery[J]. Journal of Harbin Institute of Technology, 2016, 48(8): 161-165, 170.
|
45 |
王靖, 柯少勇, 黄贤坤, 等 . 锂离子电池电极颗粒分布对电化学性能影响的分析[J]. 化工进展, 2018, 37(7): 2620-2626.
|
|
WANG J , KE S Y , HUANG X K , et al . Analysis of the effects of electrode particle size distribution on the electrochemical performances of lithium ion battery[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2620-2626.
|
46 |
陈珑, 孙晓刚, 邱治文, 等 . 碳纳米管增强三元材料的电化学性能[J]. 化工进展, 2017, 36(12): 4533-4539.
|
|
CHEN L , SUN X G , QIU Z W , et al . Enhancement of electrochemical performance of ternary material by using carbon nanotube as conductive additive[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4533-4539.
|
47 |
LEIFER N , MATLAHOV I , ERICKSON E M , et al . Ammonia treatment of 0.35Li2MnO3·0.65LiNi0.35Mn0.45Co0.20O2 material: insights from solid-state NMR analysis[J]. The Journal of Physical Chemistry C, 2018, 122(7): 3773-3779.
|