化工进展 ›› 2020, Vol. 39 ›› Issue (1): 206-215.DOI: 10.16085/j.issn.1000-6613.2019-0705
收稿日期:
2019-05-04
出版日期:
2020-01-05
发布日期:
2020-01-14
通讯作者:
阳鹏飞
作者简介:
阳鹏飞(1978—),男,副教授,硕士生导师,研究方向为功能材料的制备与应用。E-mail:基金资助:
Pengfei YANG1,2(),Jiexin LI1,Chunxia ZHU1
Received:
2019-05-04
Online:
2020-01-05
Published:
2020-01-14
Contact:
Pengfei YANG
摘要:
磁性纳米材料具有较强的化学稳定性、可再生回收、良好的吸附性能和易于分离等优点,在去除水溶液中的铀酰离子方面有广泛的应用前景。然而,磁性纳米材料也存在易团聚、易氧化等不足,通过表面修饰或改性等方法可改善其不足,提高其对废水中铀酰离子的去除能力,改善其吸附效果。本文通过总结近年来的相关研究资料,概括了磁性纳米材料的种类,归纳总结并比较了不同种类磁性纳米材料对含铀废水的去除能力及优势与不足,探讨了磁性纳米材料在含铀废水处理中的应用并对其机理进行了分析,阐述了磁性纳米材料去除溶液中铀酰离子的影响因素,简述了目前磁性纳米材料在处理含铀废水中有待解决的问题,并对其在分离放射性元素方面的应用前景进行了展望。
中图分类号:
阳鹏飞,黎杰鑫,朱春霞. 磁性纳米材料处理含铀废水的研究进展[J]. 化工进展, 2020, 39(1): 206-215.
Pengfei YANG,Jiexin LI,Chunxia ZHU. Research progress in treating uranium containing wastewater with magnetic materials[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 206-215.
11 | SHEN Y , ZHANG Y , ZHANG X , et al . Horseradish peroxidase-immobilized magnetic mesoporous silica nanoparticles as a potential candidate to eliminate intracellular reactive oxygen species[J]. Nanoscale, 2015, 7(7): 2941-2950. |
12 | WANG Z , XU J , HU Y ,et al . Functional nanomaterials: study on aqueous Hg(Ⅱ) adsorption by magnetic Fe3O4@SiO2-SH nanoparticles[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60: 394-402. |
13 | LI L , HUANG F , YUAN Y , et al . Preparation and sorption performance of magnetic 18-crown-6/Fe3O4, nanocomposite for uranium(Ⅵ) in solution[J]. Journal of Radioanalytical & Nuclear Chemistry, 2013, 298(1): 227-235. |
14 | 赵东媛 . 磁性核壳纳米材料的可控制备及其净水性能的研究[D]. 石家庄: 河北师范大学, 2013. |
ZHAO D Y . Controllable synthesis of magnetic core-shell nanocomposites and their performance for water purification[D]. Shijiazhuang: Hebei Normal University, 2013. | |
15 | YIN L , SONG S , WANG X , et al . Rationally designed core-shell and yolk-shell magnetic titanate nanosheets for efficient U(Ⅵ) adsorption performance[J]. Environmental Pollution, 2018, 238: 725-738. |
16 | OUYANG Y , PENG Y , LI J , et al . Modulation of thiol-dependent redox system by metal ions via thioredoxin and glutaredoxin systems[J]. Metallomics Integrated Biometal Science, 2018, 10(2): 218-228. |
17 | GAO F , ZHANG W , GUO Y , et al . Removal of U(Ⅵ) in aqueous solution by a compound of hydroxyapatite and nanoscale zero-valent iron[J]. China Ceramics, 2015, 51(8): 10-15. |
1 | ZHANG M . Nanometer material for deacidification for documents of the Republic of China Era[J]. Journal of Academic Libraries, 2018(3): 88-93, 128. |
2 | METELKINA O N , LODGE R W , RUDAKOVSKAYA P G , et al . Nanoscale engineering of hybrid magnetite-carbon nanofibre materials for magnetic resonance imaging contrast agents[J]. Journal of Materials Chemistry C, 2017, 5(8): 2167-2174. |
18 | POPESCU (Hoştuc) I-C, FILIP P , HUMELNICU D , et al . Removal of uranium (Ⅵ) from aqueous systems by nanoscale zero-valent iron particles suspended in carboxy-methyl cellulose[J]. Journal of Nuclear Materials, 2013, 443(1/2/3): 250-255. |
19 | LI X , MING Z , LIU Y B , et al . Removal of U(Ⅵ) in aqueous solution by nanoscale zero-valent iron(nZVI)[J]. Water Quality Exposure & Health, 2013, 5(1): 31-40. |
20 | SUN Y , DING C , CHENG W , et al . Simultaneous adsorption and reduction of U(Ⅵ) on reduced graphene oxide-supported nanoscale zerovalent iron[J]. Journal of Hazardous Materials, 2014, 280: 399-408. |
3 | SUN Y , LU G M , TANG Z X . Preparation of magnetic nanometer Fe3O4@MOF-5 and its adsorption performance for Congo red[J]. Liaoning Chemical Industry, 2017(11): 1052-1054, 1071. |
4 | LI J , ZHOU Q , LIU Y , et al . Recyclable nanoscale zero-valent iron-based magnetic polydopamine coated nanomaterials for the adsorption and removal of phenanthrene and anthracene[J]. Science & Technology of Advanced Materials, 2017, 18(1): 3-16. |
21 | 张纯, 张伟, 周星火 .零价铁粉在含U(Ⅵ)废水处理中的应用研究[J].铀矿冶, 2009, 28(3): 155-157. |
ZHANG Chun , ZHANG Wei , ZHOU Xinghuo . Study on application of zero-valent iron powder in U(Ⅵ) wastewater treatment[J].Uranium Mining and Metallurgy, 2009, 28(3): 155-157. | |
22 | LING L , ZHANG W X . Enrichment and encapsulation of uranium with iron nanoparticle[J]. Journal of the American Chemical Society, 2015, 137(8): 2788. |
23 | SHENG G , SHAO X , LI Y , et al . Enhanced removal of uranium(Ⅵ) by nanoscale zerovalent iron supported on Na-bentonite and an investigation of mechanism[J]. Journal of Physical Chemistry A, 2014, 118(16): 2952-2958. |
24 | HU B , YE F , REN X , et al . X-ray absorption fine structure study of enhanced sequestration of U(Ⅵ) and Se(Ⅵ) by montmorillonite decorated with zero-valent iron nanoparticles[J]. Environmental Science: Nano, 2016, 3(6): 1460-1472. |
25 | LIU M , WANG Y , CHEN L , et al . Mg(OH)2 supported nanoscale zero valent iron enhancing the removal of Pb(Ⅱ) from aqueous solution[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 7961-7969. |
26 | LIU Q , BEI Y L , FENG Z . Removal of lead(Ⅱ) from aqueous solution with amino-functionalized nanoscale zero-valent iron[J]. Central European Journal of Chemistry, 2009, 7(1): 79-82. |
27 | SUN Y , DING C , CHENG W , et al . Simultaneous adsorption and reduction of U(Ⅵ) on reduced graphene oxide-supported nanoscale zerovalent iron[J]. Journal of Hazardous Materials, 2014, 280: 399-408. |
28 | LIU J , DAI C , HU Y . Aqueous aggregation behavior of citric acid coated magnetite nanoparticles: effects of pH, cations, anions, and humic acid[J]. Environmental Research, 2018,161: 49-60. |
29 | MA Z , SHAN C , LIANG J , et al . Efficient adsorption of selenium(Ⅵ) from water by hematite modified magnetic nanoparticles[J]. Chemosphere, 2018, 193: 134-141. |
30 | MINITHA C R , ARACHY M M S . Influence of Fe3O4 nanoparticles decoration on dye adsorption and magnetic separation properties of Fe3O4/rGO nanocomposites[J]. Separation Science & Technology, 2018, 53(14): 2159-2169. |
31 | 周智慧, 李乐, 张宗波, 等 .复合磁性纳米材料的制备及其吸附铀的性能研究[J].应用化工, 2016, 45(2): 198-202. |
ZHOU Zhihui , LI Le , ZHANG Zongbo , et al . Syntheses of magnetic nanocomposite and its adsorption of uranyl ions[J]. Applied Chemical Industry, 2016, 45(2): 198-202. | |
32 | DING C , CHENG W , SUN Y , et al . Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides[J]. Journal of Hazardous Materials, 2015, 295: 127-137. |
33 | 廖琪, 李乐, 袁亚莉, 等 .功能化磁性纳米粒子制备及其铀吸附性能研究[J]. 应用化工, 2018, 47(7): 1336-1338, 1341. |
LIAO Qi , LI Le , YUAN Yali , et al . Preparation and adsorption performance of functionalized nano-Fe3O4 for uranyl ions from aqueous solution[J]. Applied Chemical Industry, 2018, 47(7): 1336-1338, 1341. | |
34 | LI L , HU N , DING D , et al . Adsorption and recovery of U(Ⅵ) from low concentration uranium solution by amidoxime modified Aspergillus niger [J]. RSC Advances, 2015, 5(81): 65827-65939. |
35 | CHEN Z , JIAN W , PU Z , et al . Synthesis of magnetic Fe3O4/CFA composites for the efficient removal of U(Ⅵ) from wastewater[J]. Chemical Engineering Journal, 2017,320. |
36 | SHAO D , WANG X , LI J , et al . Reductive immobilization of uranium by PAAM-FeS/Fe3O4 magnetic composites[J]. Environmental Science Water Research & Technology, 2015, 1(2): 169-176. |
37 | QI Z , JOSHI T P , LIU R , et al . Adsorption combined with superconducting high gradient magnetic separation technique used for removal of arsenic and antimony[J]. Journal of Hazardous Materials, 2017, 343: 36-48. |
38 | SONG X M , TAN L C , MA H Y , et al . Facile preparation of S-doped magnetite hollow spheres for highly efficient sorption of uranium(Ⅵ)[J]. Dalton Transactions, 2017, 46(10): 3347-3352. |
39 | TAN L , WANG Y , LIU Q , et al . Enhanced adsorption of uranium (Ⅵ) using a three-dimensional layered double hydroxide/graphene hybrid material[J]. Chemical Engineering Journal, 2015, 259: 752-760. |
40 | TAN L , WANG J , LIU Q , et al . The synthesis of a manganese dioxide-iron oxide-graphene magnetic nanocomposite for enhanced uranium(Ⅵ) removal[J]. New Journal of Chemistry, 2014, 39(2): 868-76. |
41 | ZHAO D , CHEN L , SUN M , et al . Preparation and application of magnetic graphene oxide composite for the highly efficient immobilization of U(Ⅵ) from aqueous solutions[J]. Journal of Radioanalytical & Nuclear Chemistry, 2015, 306(1): 221-229. |
42 | SHAO L , WANG X , REN Y , et al . Facile fabrication of magnetic cucurbit[6]uril/graphene oxide composite and application for uranium removal[J]. Chemical Engineering Journal, 2016, 286: 311-319. |
43 | DING C , CHENG W , SUN Y , et al . Determination of chemical affinity of graphene oxide nanosheets with radionuclides investigated by macroscopic, spectroscopic and modeling techniques[J]. Dalton Transactions, 2014, 43(10): 3888-3896. |
44 | CHEN L , ZHAO D , CHEN S , et al . One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(Ⅵ) removal[J]. J. Colloid. Interface Sci., 2016, 472: 99-107. |
45 | ZHANG X , TAN J , XU X , et al . A coordination polymer based magnetic adsorbent material for hemoglobin isolation from human whole blood, highly selective and recoverable[J]. Journal of Solid State Chemistry, 2017, 253: 219-226. |
46 | ZHAO Y , LI J , ZHAO L , et al . Synthesis of amidoxime-functionalized Fe3O4@SiO2, core-shell magnetic microspheres for highly efficient sorption of U(Ⅵ)[J]. Chemical Engineering Journal, 2014, 235: 275-283. |
47 | 张晓飞 .几种核壳结构磁性材料的制备及其铀吸附性能[D]. 哈尔滨: 哈尔滨工程大学, 2014. |
ZHANG Xiaofei . Synthesis of core/shell structural magnetic materials and their adsorption properties of uranium[D]. Harbin: Harbin Engineering University, 2014. | |
48 | 吴伟林, 谢永波, 谢磊, 等 . 纳米Fe3O4负载铜绿假单胞菌吸附U(Ⅵ)的热力学与动力学研究[J]. 安全与环境学报, 2013, 13(6): 26-30. |
5 | LIU J , LIU A , ZHANG W X . The influence of polyelectrolyte modification on nanoscale zero-valent iron (nZVI): Ag-gregation, sedimentation, and reactivity with Ni(Ⅱ) in water[J]. Chemical Engineering Journal, 2016, 303: 268-274. |
6 | KUMARI M , Pittman C U , MOHAN D . Heavy metals chromium (Ⅵ) and lead (Ⅱ) removal from water using mesoporous magnetite (Fe3O4) nanospheres[J]. Journal of Colloid & Interface Science, 2015, 442: 120-132. |
48 | WU Weilin , XIE Yongbo , XIE Lei , et al . Thermodynamics and kinetics of adsorption of U(Ⅵ) by nano-Fe3O4 loaded Pseudomonas aeruginosa [J]. Journal of Safety and Environment, 2013, 13(6): 26-30. |
49 | YUAN Dingzhong , ZHANG Shiao , XIANG Zhihao , et al . Highly efficient removal of uranium from aqueous solution using a magnetic adsorbent bearing phosphine oxide ligand: a combined experimental and DFT study[J]. ACS Sustainable Chem. Eng., 2018, 6(8): 9619-9627. |
50 | XU S , ZHAO Y , ZHENG F , et al . Hollow Fe3O4@mesoporous carbon core-shell microspheres for efficient sorption of radionuclides[J]. Journal of Materials Science, 2016, 51(5): 2550-2557. |
51 | ALJARRAH M T , Al-HARAHSHEH MOHAMMAD S , MAYYAS M , et al . In situ synthesis of quaternary ammonium on silica-coated magnetic nanoparticles and it’s application for the removal of uranium (Ⅵ) from aqueous media[J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 5662-5669. |
52 | ZHU J , LIU Q , LI Z , et al . Efficient extraction of uranium from aqueous solution using an amino-functionalized magnetic titanate nanotubes[J]. Journal of Hazardous Materials, 2018, 353: 9-17. |
53 | CUI L , GUO X , WEI Q , et al . Removal of mercury and methylene blue from aqueous solution by xanthate functionalized magnetic graphene oxide: sorption kinetic and uptake mechanism[J]. J. Colloid. Interface Sci., 2015, 439: 112-120. |
54 | GHANBARI F , MORADI M , MANSHOURI M . Textile wastewater decolorization by zero valent iron activated peroxymonosulfate: compared with zero valent copper[J]. Journal of Environmental Chemical Engineering, 2014, 2(3): 1846-1851. |
55 | Al-HARAHSHEH M , ALJARRAH M , MAYYAS M , et al . High-stability polyamine/amide-functionalized magnetic nanoparticles for enhanced extraction of uranium from aqueous solutions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 86: 148-157. |
56 | CHEN M L , WANG H , MAO Q X , et al . Hydrous-ferric oxide nanorods grown on PEGylated graphene oxide with superior capacity for selective adsorption of albumin[J]. Carbon, 2015, 85: 335-343. |
57 | BAI L , LI Z , ZHANG Y , et al . Synthesis of water-dispersible graphene-modified magnetic polypyrrole nanocomposite and its ability to efficiently adsorb methylene blue from aqueous solution[J]. Chemical Engineering Journal, 2015, 279: 757-766. |
7 | KATARIA N , GARG V K . Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (Ⅱ) removal from water: regeneration and mechanism[J]. Chemosphere, 2018, 208: 818-828. |
8 | ZHONG Y , YU L , CHEN Z F , et al . Microwave-assisted synthesis of Fe3O4 nanocrystals with predominantly exposed facets and their heterogeneous UVA/Fenton catalytic activity[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29203-29212. |
58 | MENG Y , CHEN D , SUN Y , et al . Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method[J]. Applied Surface Science, 2015, 324: 745-750. |
59 | CUI J , MA X L , WU X G , et al . Adsorption of 2,4,6-trichlorophenol by magnetic mesoporous SiO2 and the adsorption capacity regeneration by UV photolysis[J]. Desalination and Water Treatment, 2016, 57(14): 6614-6623. |
60 | ZHAO H , LANG Y . Adsorption behaviors and mechanisms of florfenicol by magnetic functionalized biochar and reed biochar[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88: 152-160. |
61 | 陈小松, 周利民, 刘峙嵘 .三聚磷酸钠交联磁性壳聚糖树脂对铀酰离子的吸附特性[J]. 原子能科学技术, 2015, 49(6): 972-978. |
CHEN Xiaosong , ZHOU Limin , LIU Zhirong . Adsorption of U O 2 2 + ion onto tripolyphosphate-crosslinked magnetic chitosan resin[J]. Atomic Energy Science and Technology, 2015, 49(6): 972-978. | |
62 | 胡建邦, 袁亚莉, 唐琼, 等 .氨基化改性Fe3O4/SiO2复合磁性材料的制备以及对铀(Ⅵ)的吸附研究[J]. 应用化工, 2012, 41(12): 2067-2070, 2074. |
HU Jianbang , YUAN Yali , TANG Qiong , et al . Preparation and adsorption of uranyl(Ⅵ) of amino-modified magnetic Fe3O4/SiO2 composite materials[J]. Applied Chemical Industry, 2012, 41(12): 2067-2070, 2074. | |
9 | 贾映彤, 高志贤, 崔建升 . 两种氨基修饰的四氧化三铁磁性纳米颗粒的制备与表征[J]. 解放军预防医学杂志, 2017, 35(1): 1-5. |
JIA Yingtong , GAO Zhixian , CUI Jiansheng . Preparation and characterization of two different amino-modified iron oxide magnetic nanoparticles and determination of the amount of amino on nanoparticle surface[J]. Journal of Preventive Medicine of Chinese People’s Liberation Army, 2017, (1): 1-5. | |
10 | ZHAO N , YANG X , ZHANG J , et al . Adsorption mechanisms of dodecylbenzene sulfonic acid by corn straw and poplar leaf biochars[J]. Materials, 2017, 10(10): 1119. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[7] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[8] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[9] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[10] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[13] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[14] | 王琦, 寇丽红, 王冠宇, 王吉坤, 刘敏, 李兰廷, 王昊. 焦化废水生物出水中可溶解性有机物的分子识别[J]. 化工进展, 2023, 42(9): 4984-4993. |
[15] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |