1 |
HAMAD K, KASEEM M, AYYOOB M, et al. Polylactic acid blends: the future of green, light and tough[J]. Prog. Polym. Sci., 2018, 85(10): 83-127.
|
2 |
BATTEGAZZORE D, FRACHE A, ABT T, et al. Epoxy coupling agent for PLA and PHB copolymer-based cotton fabric bio-composites[J]. Compos. Part B, 2018, 148(9): 188-197.
|
3 |
SCAFFARO R, LOPRESTI F, BOTTA L. PLA based biocomposites reinforced with posidonia oceanica leaves[J]. Compos. Part B, 2018, 139(4): 1-11.
|
4 |
胡建军. 聚乳酸合成技术研究进展[J]. 化工进展, 2012, 31(12): 2724-2728.
|
|
HU J J. Research progress in polylactic acid synthesis[J]. Chemical Industry and Engineering Progress., 2012, 31(12): 2724-2728.
|
5 |
NAGARAJAN V, MOHANTY A K, MISRA M. Perspective on polylactic acid(PLA) based sustainable materials for durable applications: focus on toughness and heat resistance[J]. ACS Sustainable Chem. Eng., 2016, 4(6): 2899-2916.
|
6 |
JAHANDIDEH A, MUTHUKUMARAPPAN K. Star-shaped lactic acid based systemsand their thermosetting resins; synthesis, characterization, potential oppor-tunities and drawbacks[J]. Eur. Polym. J., 2017, 87(2): 360-379.
|
7 |
黄玲玲, 姜志华. PLA的合成及改性研究进展[J]. 合成树脂及塑料, 2010, 27(6): 65-69.
|
|
HUANG L L, JIANG Z H. Progress of study on synthesis and modification of poly(lactic acid)[J]. China Synthetic Resin Plast, 2010, 27(6): 65-69.
|
8 |
李宣, 杜纪富. 聚乳酸膜的研究进展[J]. 广州化工, 2017, 45(15): 21-23.
|
|
LI X, DU J F. Research progress on polylactic acid film[J]. Guangzhou Chem. Ind., 2017, 45(15): 21-23.
|
9 |
龚勇吉, 张道海, 何敏, 等. 聚乳酸基层状纳米复合材料的研究进展[J]. 高分子材料科学与工程, 2018, 34(6):185-191.
|
|
GONG Y J, ZHANG D H, HE M, et al. Progress in grassroots nanocomposites based on poly(lactic acid)[J]. Polym. Mater. Sci. Eng., 2018, 34(6): 185-191.
|
10 |
MUSIOŁ M, SIKORSKA W, ADAMUS G, et al. Forensic engineering of advanced polymeric materials. Part Ⅲ:biodegradation of thermoformed rigid PLA packaging under industrial composting conditions[J]. Waste Manag., 2016, 52(6): 69-76.
|
11 |
SILVA D, KADURI M, POLEY M, et al. Biocompatibility, biodegradation and excretion of polylactic acid(PLA) in medical implants and theranostic systems[J]. Chem. Eng. J., 2018, 340(5): 9-14.
|
12 |
LIN L, DENG C, LIN G P, et al. Super toughened and high heat-resistant poly (lactic acid)(PLA)-based blends by enhancing interfacial bonding and PLA phase crystallization[J]. Ind. Eng. Chem. Res., 2015, 54(21): 5643-5655.
|
13 |
DOGAN S K, BOYACIOGLU S, KODAL M, et al. Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: “effects of compatibilization”[J]. J. Mech. Behav. Biomed., 2017, 71(7): 349-361.
|
14 |
任建鹏, 何崇伟, 周锦霞, 等. 超临界CO2中合成PLA及PLGA研究进展[J]. 塑料科技, 2010, 38(10): 101-105.
|
|
REN J P, HE C W, ZHOU J X, et al. Research progress on synthesis of PLA and PLGA in ScCO2[J]. Plastic Sci. Tech., 2010, 38(10): 101-105.
|
15 |
王景昌, 商雪航, 王卫京, 等. 酶催化合成脂肪族聚酯的研究进展[J]. 化工进展, 2017, 36(7): 2592-2600.
|
|
WANG J C, SHANG X H, WANG W J, et al. Review on enzymatic synthesis of aliphatic polyester[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2592-2600.
|
16 |
BASKO M, BEDNAREK M, KUBISA P. Cationic copolymerization of L,L-lactide with hydroxyl substituted cyclic ethers[J]. Polymers for Advanced Technologies, 2015, 26(7): 804-813.
|
17 |
BEDNAREK M, BASKO M, BIEDRON T, et al. Polymerization of lactide initiated by primary amines and catalyzed by a protic acid[J]. Eur. Polym. J., 2015, 71(10): 380-388.
|
18 |
SIPOS L, ZSUGA M. Anionic polymerization of L-lactide effect of lithium and potassium as counterions[J]. J. Macromol. Sci. Part A, 1997, 34(7): 1269-1284.
|
19 |
GALLARD A, ROMAN J S. Random polyester transesterification: prediction of molecular weight and MW distribution[J]. Macromolecules, 1998, 31(21): 7187-7194.
|
20 |
RAHMAYETTY, WHULANZA Y, SUKIRNO, et al. Use of candida rugosa lipase as a biocatalyst for L-lactide ring-opening polymerization and polylactic acid production[J]. Biocatal. Agr. Biotech., 2018, 16(10): 683-691.
|
21 |
BADENS E, MASMOUDI Y, MOUAHID A, et al. Current situation and perspectives in drug formulation by using supercritical fluid technology[J]. J. Supercrit. Fluid, 2018, 134(4): 274-283.
|
22 |
范芳君, 张治国, 邢华斌, 等. 超临界二氧化碳中合成环碳酸酯的催化剂研究进展[J]. 化工进展, 2017, 36(8): 2924-2933.
|
|
FAN F J, ZHANG Z G, XING H B, et al. Progress in synthesis of cyclic carbonates under supercritical carbon dioxide[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2924-2933.
|
23 |
YILMAZ M, EĞRI S, YILDIZ N, et al. Dispersion polymerization of L-lactide in supercritical carbon dioxide[J]. J. Polym. Res., 2011, 18(5): 975-982.
|
24 |
FERRARI R, PECORARO CM, STORTI G, et al. A green route to synthesizepoly(lactic acid)-based macromonomers in ScCO2 for biodegradable nanoparticle production[J]. RSC Adv., 2014, 4(25): 12795-12804.
|
25 |
NIU X, LIU Z, HU J, et al. Microspheres assembled from chitosan-graft-poly(lactic acid) micelle-like core-shell nanospheres for distinctly controlled release of hydrophobic and hydrophilic biomolecules[J]. Macromol. Biosci., 2016, 16(7): 1039-1047.
|
26 |
PERRIER S, TAKOLPUCKDEE P. Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization[J]. J. Polym. Sci. Part A, 2005, 43(22): 5347-5393.
|
27 |
NAM K W, WATANABE J, ISHIHARA K. Characterization of the spontaneously forming hydrogels composed of water-soluble phospholipid polymers[J]. Biomacromolecules, 2002, 3(1): 100-105.
|
28 |
GU Y, ZHONG Y, MENG F, et al. Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy[J]. Biomacromolecules, 2013, 14(8): 2772-2780.
|
29 |
HAMI Z, AMINI M, GHAZI-KHANSARI M, et al. Synthesis and in vitro evaluation of a pH-sensitive PLA-PEG-folate based polymeric micelle for controlled delivery of docetaxel[J]. Colloid Surface B, 2014, 116(4): 309-317.
|
30 |
PRAPHULLA T, MARIANNA K. Rheological characterization of long-chain branched poly(lactide) prepared by reactive extrusion in the presence of allylic and acrylic coagents[J]. J. Rheol., 2018, 62(5): 1071-1082.
|
31 |
DING A, TENG L, ZHOU Y, et al. Synthesis and characterization of bovine serum albumin-loaded microspheres based on star-shaped PLLA with a xylitol core and their drug release behaviors[J]. Polym. Bull., 2018, 75(7): 2917-2931.
|
32 |
LONG L, ZHAO J, LI K, et al. Synthesis of star-branched PLA-b-PMPC copolymer micelles as long blood circulation vectors to enhance tumor-targeted delivery of hydrophobic drugs in vivo[J]. Mater. Chem. Phys., 2016, 180(9): 184-194.
|