1 |
FU L, CAI W, WANG A, et al. Photocatalytic hydrogenation of nitrobenzene to aniline over tungsten oxide-silver nanowires[J]. Materials Letters, 2015, 142: 201-203.
|
2 |
LI S, SHELAR D P, HOU C C, et al. WO3 nanospheres with improved catalytic activity for visible light induced cross dehydrogenative coupling reactions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 363: 44-50.
|
3 |
廖永进, 张亚平, 朱一闻, 等. WO3掺杂对V2O5/TiO2-SnO2催化剂NH3选择性催化还原NOx的影响[J]. 化工进展, 2017, 36(3): 951-956.
|
|
LIAO Y J, ZHANG Y P, ZHU Y W, et al. Influence of WO3 doping on properties of V2O5/TiO2-SnO2 catalysts for selective catalytic reduction of NOx by NH3[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 951-956.
|
4 |
MOON H G, SHIM Y S, KIM D H, et al. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors[J]. Scientific Reports, 2012, 2: 588.
|
5 |
KAVITHA V S, SURESH S, CHALANA S R, et al. Luminescent Ta doped WO3 thin films as a probable candidate for excitonic solar cell applications[J]. Applied Surface Science, 2019, 466: 289-300.
|
6 |
WANG S, FAN W, LIU Z, et al. Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties[J]. Journal of Materials Chemistry C, 2018, 6(2): 191-212.
|
7 |
LOU Z Z, ZHU M S, YANG X G, et al. Continual injection of photoinduced electrons stabilizing surface plasmon resonance of non-elemental-metal plasmonic photocatalyst CdS/WO3-x for efficient hydrogen generation[J]. Applied Catalysis B: Environmental, 2018, 226: 10-15.
|
8 |
WANG J, CHEN Z, ZHAI G, et al. Boosting photocatalytic activity of WO3 nanorods with tailored surface oxygen vacancies for selective alcohol oxidations[J]. Applied Surface Science, 2018, 462: 760-771.
|
9 |
ZHANG Q, DONG R, WU Y, et al. Light-driven Au-WO3@C janus micromotors for rapid photodegradation of dye pollutants[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4674-4683.
|
10 |
ZHOU H, WEN Z, LIU J, et al. Z-scheme plasmonic Ag decorated WO3/Bi2WO6 hybrids for enhanced photocatalytic abatement of chlorinated-VOCs under solar light irradiation[J]. Applied Catalysis B: Environmental, 2019, 242: 76-84.
|
11 |
TORABI M M, NASIRI M, ABEDINI E, et al. Enhanced gas-phase photocatalytic oxidation of n-pentane using high visible-light-driven Fe-doped WO3 nanostructures[J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 6741-6748.
|
12 |
AN X, YU J C, WANG Y, et al. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing[J]. Journal of Materials Chemistry, 2012, 22(17): 8525.
|
13 |
TIE L, YU C, ZHAO Y, et al. Fabrication of WO3 nanorods on reduced graphene oxide sheets with augmented visible light photocatalytic activity for efficient mineralization of dye[J]. Journal of Alloys and Compounds, 2018, 769: 83-91.
|
14 |
XIAO T, TANG Z, YANG Y, et al. In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics[J]. Applied Catalysis B: Environmental, 2018, 220: 417-428.
|
15 |
MART NEZ-GARC A A, VENDRA V K, SUNKARA S, et al. Tungsten oxide-coated copper oxide nanowire arrays for enhanced activity and durability with photoelectrochemical water splitting[J]. Journal of Materials Chemistry A, 2013, 1(48): 15235.
|
16 |
SHARMA K, MAITI K, KIM N H,et al. Green synthesis of glucose-reduced graphene oxide supported Ag-Cu2O nanocomposites for the enhanced visible-light photocatalytic activity[J]. Composites Part B: Engineering, 2018, 138: 35-44.
|
17 |
HUANG H, ZHANG J, JIANG L, et al. Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B[J]. Journal of Alloys and Compounds, 2017, 718: 112-115.
|
18 |
JAMALI S, MOSHAII A. Improving photo-stability and charge transport properties of Cu2O/CuO for photo-electrochemical water splitting using alternate layers of WO3 or CuWO4 produced by the same route[J]. Applied Surface Science, 2017, 419: 269-276.
|
19 |
龙丹, 周俊伶, 时洪民, 等. 氧化亚铜光催化剂性能提升及增强机制的研究进展[J]. 化工进展, 2019, 38(6): 2756-2767.
|
|
LONG D, ZHOU J L, SHI H M, et al. Research progress on the improved performance of cuprous oxide photocatalyst and its enhancement mechanism[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2756-2767.
|
20 |
付星晨, 颜德健, 刘冀锴. 基于氧化亚铜光电极的制备及其光电化学性能的研究进展[J]. 化工进展, 2018, 37(1): 140-148.
|
|
FU X C, YAN D J, LIU J K. Research progress of fabrication and photoelectrochemical properties based on Cu2O photoelectrodes[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 140-148.
|
21 |
GONG H, ZHANG Y, CAO Y, et al. Pt@Cu2O/WO3 composite photocatalyst for enhanced photocatalytic water oxidation performance[J]. Applied Catalysis B: Environmental, 2018, 237: 309-317.
|
22 |
SHI W, GUO X, CUI C, et al. Controllable synthesis of Cu2O decorated WO3 nanosheets with dominant (001) facets for photocatalytic CO2 reduction under visible-light irradiation[J]. Applied Catalysis B: Environmental, 2019, 243: 236-242.
|
23 |
HU C C, NIAN J N, TENG H. Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3[J]. Solar Energy Materials and Solar Cells, 2008, 92(9): 1071-1076.
|
24 |
黄颖, 闫常峰, 郭常青, 等. 半导体Z反应光解水制氢的光能转换效率及研究进展[J]. 化工进展, 2014, 33(12): 3221-3229.
|
|
HUANG Y, YANG C F, GUO C Q, et al. Photo conversion efficiency of and research advance in semiconductor Z-scheme photocatalytic water splitting for hydrogen production[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3221-3229.
|
25 |
庄朋强, 肖占文, 朱向东, 等. 钽阳极氧化膜的半导体性研究[J]. 电子元件与材料, 2011, 30(8): 35-39.
|
|
ZHUANG P Q, XIAO Z W, ZHU X D, et al. Study on semiconductor properties of anodic oxide films on tantalum[J]. Electronic Components & Materials, 2011, 30(8): 35-39.
|
26 |
ZHANG J, MA H, LIU Z. Highly efficient photocatalyst based on all oxides WO3/Cu2O heterojunction for photoelectrochemical water splitting[J]. Applied Catalysis B: Environmental, 2017, 201: 84-91.
|
27 |
ZHOU Z, WU Z, XU Q, et al. A solar-charged photoelectrochemical wastewater fuel cell for efficient and sustainable hydrogen production[J]. Journal of Materials Chemistry A, 2017, 5(48): 25450-25459.
|
28 |
FANG H, CAO X, YU J, et al. Preparation of the all-solid-state Z-scheme WO3/Ag/AgCl film on glass accelerating the photodegradation of pollutants under visible light[J]. Journal of Materials Science, 2018, 54(1): 286-301.
|
29 |
YE Y, YANG H, WANG X, et al. Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts[J]. Materials Science in Semiconductor Processing, 2018, 82: 14-24.
|
30 |
MOUSAVI M, HABIBI-YANGJEH A. Integration of NiWO4 and Fe3O4 with graphitic carbon nitride to fabricate novel magnetically recoverable visible-light-driven photocatalysts[J]. Journal of Materials Science, 2018, 53(12): 9046-9063.
|
31 |
LIU C, ZHU H, ZHU Y, et al. Ordered layered N-doped KTiNbO5/g-C3N4 heterojunction with enhanced visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 228: 54-63.
|
32 |
YUAN X, JIANG L, CHEN X, et al. Highly efficient visible-light-induced photoactivity of Z-scheme Ag2CO3/Ag/WO3 photocatalysts for organic pollutant degradation[J]. Environmental Science: Nano, 2017, 4(11): 2175-2185.
|
33 |
WANG Q, SUN C, LIU Z, et al. Ultrasound-assisted successive ionic layer adsorption and reaction synthesis of Cu2O cubes sensitized TiO2 nanotube arrays for the enhanced photoelectrochemical performance[J]. Materials Research Bulletin, 2019, 111: 277-283.
|
34 |
MINGGU L J, NG K H, KADIR H A, et al. Bilayer n-WO3/p-Cu2O photoelectrode with photocurrent enhancement in aqueous electrolyte photoelectrochemical reaction[J]. Ceramics International, 2014, 40(10): 16015-16021.
|
35 |
WEI S, MA Y, CHEN Y, et al. Fabrication of WO3/Cu2O composite films and their photocatalytic activity[J]. Journal of Hazardous Materials, 2011, 194: 243-249.
|