化工进展 ›› 2019, Vol. 38 ›› Issue (12): 5442-5448.DOI: 10.16085/j.issn.1000-6613.2019-0421
收稿日期:
2019-03-20
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
张卫国
作者简介:
王宏智(1973—),男,博士,副教授,研究方向为半导体光催化。E-mail:
Hongzhi WANG(),Jun LI,Suwei YAO,Weiguo ZHANG(
)
Received:
2019-03-20
Online:
2019-12-05
Published:
2019-12-05
Contact:
Weiguo ZHANG
摘要:
采用高温水热法和共沉淀法制备了不同摩尔比的pn型Cu2O-WO3复合半导体材料。并利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)对样品的形貌特征和晶格结构进行表征。表征结果显示,复合材料由立方相的Cu2O和六方相的WO3组成。与纯WO3物质相比,Cu2O-WO3复合半导体材料的紫外吸收边界发生显著红移,在可见光波长范围内的光吸收明显增强,展示出优良的光电流响应性能。以罗丹明B(RhB)溶液的光降解表征材料的光催化性能的过程中,在可见光下光照8h后,相较于WO3和Cu2O仅为22.2%和45.2%的光降解率,摩尔比为1∶2的Cu2O-WO3复合物的降解效率达到了90.6%。
中图分类号:
王宏智,李骏,姚素薇,张卫国. pn型Cu2O-WO3的制备及光催化性能[J]. 化工进展, 2019, 38(12): 5442-5448.
Hongzhi WANG,Jun LI,Suwei YAO,Weiguo ZHANG. Synthesis and photocatalytic properties of pn-type Cu2O-WO3[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5442-5448.
催化材料 | 反应速率常数k/h-1 | 线性相关系数R |
---|---|---|
Cu2O | 0.07722 | 0.99129 |
WO3 | 0.03479 | 0.99651 |
Cu2O-WO3 | 0.22958 | 0.99198 |
表1 光降解RhB溶液的动力学常数和相关系数
催化材料 | 反应速率常数k/h-1 | 线性相关系数R |
---|---|---|
Cu2O | 0.07722 | 0.99129 |
WO3 | 0.03479 | 0.99651 |
Cu2O-WO3 | 0.22958 | 0.99198 |
材料 | 光源 | 光降解率/% | 参考文献 |
---|---|---|---|
Cu2O-WO3 | 500W Xe灯 | 90.6 | 本文 |
15%g-C3N4/LaFeO3 | 200W Xe灯 | 58.4 | [ |
g-C3N4/Fe3O4/NiWO4 | 50W LED灯 | 87 | [ |
N-doped KTiNbO5/g-C3N4 | 500W Xe灯 | 89.9 | [ |
Ag2CO3/Ag/WO3 | 300W Xe 灯 | 89.3 | [ |
TiO2 NTs/Cu2O | 500W Xe灯 | 61.83 | [ |
表2 比较不同材料的光降解RhB性能
材料 | 光源 | 光降解率/% | 参考文献 |
---|---|---|---|
Cu2O-WO3 | 500W Xe灯 | 90.6 | 本文 |
15%g-C3N4/LaFeO3 | 200W Xe灯 | 58.4 | [ |
g-C3N4/Fe3O4/NiWO4 | 50W LED灯 | 87 | [ |
N-doped KTiNbO5/g-C3N4 | 500W Xe灯 | 89.9 | [ |
Ag2CO3/Ag/WO3 | 300W Xe 灯 | 89.3 | [ |
TiO2 NTs/Cu2O | 500W Xe灯 | 61.83 | [ |
1 | FU L, CAI W, WANG A, et al. Photocatalytic hydrogenation of nitrobenzene to aniline over tungsten oxide-silver nanowires[J]. Materials Letters, 2015, 142: 201-203. |
2 | LI S, SHELAR D P, HOU C C, et al. WO3 nanospheres with improved catalytic activity for visible light induced cross dehydrogenative coupling reactions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 363: 44-50. |
3 | 廖永进, 张亚平, 朱一闻, 等. WO3掺杂对V2O5/TiO2-SnO2催化剂NH3选择性催化还原NOx的影响[J]. 化工进展, 2017, 36(3): 951-956. |
LIAO Y J, ZHANG Y P, ZHU Y W, et al. Influence of WO3 doping on properties of V2O5/TiO2-SnO2 catalysts for selective catalytic reduction of NOx by NH3[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 951-956. | |
4 | MOON H G, SHIM Y S, KIM D H, et al. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors[J]. Scientific Reports, 2012, 2: 588. |
5 | KAVITHA V S, SURESH S, CHALANA S R, et al. Luminescent Ta doped WO3 thin films as a probable candidate for excitonic solar cell applications[J]. Applied Surface Science, 2019, 466: 289-300. |
6 | WANG S, FAN W, LIU Z, et al. Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties[J]. Journal of Materials Chemistry C, 2018, 6(2): 191-212. |
7 | LOU Z Z, ZHU M S, YANG X G, et al. Continual injection of photoinduced electrons stabilizing surface plasmon resonance of non-elemental-metal plasmonic photocatalyst CdS/WO3-x for efficient hydrogen generation[J]. Applied Catalysis B: Environmental, 2018, 226: 10-15. |
8 | WANG J, CHEN Z, ZHAI G, et al. Boosting photocatalytic activity of WO3 nanorods with tailored surface oxygen vacancies for selective alcohol oxidations[J]. Applied Surface Science, 2018, 462: 760-771. |
9 | ZHANG Q, DONG R, WU Y, et al. Light-driven Au-WO3@C janus micromotors for rapid photodegradation of dye pollutants[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4674-4683. |
10 | ZHOU H, WEN Z, LIU J, et al. Z-scheme plasmonic Ag decorated WO3/Bi2WO6 hybrids for enhanced photocatalytic abatement of chlorinated-VOCs under solar light irradiation[J]. Applied Catalysis B: Environmental, 2019, 242: 76-84. |
11 | TORABI M M, NASIRI M, ABEDINI E, et al. Enhanced gas-phase photocatalytic oxidation of n-pentane using high visible-light-driven Fe-doped WO3 nanostructures[J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 6741-6748. |
12 | AN X, YU J C, WANG Y, et al. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing[J]. Journal of Materials Chemistry, 2012, 22(17): 8525. |
13 | TIE L, YU C, ZHAO Y, et al. Fabrication of WO3 nanorods on reduced graphene oxide sheets with augmented visible light photocatalytic activity for efficient mineralization of dye[J]. Journal of Alloys and Compounds, 2018, 769: 83-91. |
14 | XIAO T, TANG Z, YANG Y, et al. In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics[J]. Applied Catalysis B: Environmental, 2018, 220: 417-428. |
15 | MART NEZ-GARC A A, VENDRA V K, SUNKARA S, et al. Tungsten oxide-coated copper oxide nanowire arrays for enhanced activity and durability with photoelectrochemical water splitting[J]. Journal of Materials Chemistry A, 2013, 1(48): 15235. |
16 | SHARMA K, MAITI K, KIM N H,et al. Green synthesis of glucose-reduced graphene oxide supported Ag-Cu2O nanocomposites for the enhanced visible-light photocatalytic activity[J]. Composites Part B: Engineering, 2018, 138: 35-44. |
17 | HUANG H, ZHANG J, JIANG L, et al. Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B[J]. Journal of Alloys and Compounds, 2017, 718: 112-115. |
18 | JAMALI S, MOSHAII A. Improving photo-stability and charge transport properties of Cu2O/CuO for photo-electrochemical water splitting using alternate layers of WO3 or CuWO4 produced by the same route[J]. Applied Surface Science, 2017, 419: 269-276. |
19 | 龙丹, 周俊伶, 时洪民, 等. 氧化亚铜光催化剂性能提升及增强机制的研究进展[J]. 化工进展, 2019, 38(6): 2756-2767. |
LONG D, ZHOU J L, SHI H M, et al. Research progress on the improved performance of cuprous oxide photocatalyst and its enhancement mechanism[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2756-2767. | |
20 | 付星晨, 颜德健, 刘冀锴. 基于氧化亚铜光电极的制备及其光电化学性能的研究进展[J]. 化工进展, 2018, 37(1): 140-148. |
FU X C, YAN D J, LIU J K. Research progress of fabrication and photoelectrochemical properties based on Cu2O photoelectrodes[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 140-148. | |
21 | GONG H, ZHANG Y, CAO Y, et al. Pt@Cu2O/WO3 composite photocatalyst for enhanced photocatalytic water oxidation performance[J]. Applied Catalysis B: Environmental, 2018, 237: 309-317. |
22 | SHI W, GUO X, CUI C, et al. Controllable synthesis of Cu2O decorated WO3 nanosheets with dominant (001) facets for photocatalytic CO2 reduction under visible-light irradiation[J]. Applied Catalysis B: Environmental, 2019, 243: 236-242. |
23 | HU C C, NIAN J N, TENG H. Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3[J]. Solar Energy Materials and Solar Cells, 2008, 92(9): 1071-1076. |
24 | 黄颖, 闫常峰, 郭常青, 等. 半导体Z反应光解水制氢的光能转换效率及研究进展[J]. 化工进展, 2014, 33(12): 3221-3229. |
HUANG Y, YANG C F, GUO C Q, et al. Photo conversion efficiency of and research advance in semiconductor Z-scheme photocatalytic water splitting for hydrogen production[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3221-3229. | |
25 | 庄朋强, 肖占文, 朱向东, 等. 钽阳极氧化膜的半导体性研究[J]. 电子元件与材料, 2011, 30(8): 35-39. |
ZHUANG P Q, XIAO Z W, ZHU X D, et al. Study on semiconductor properties of anodic oxide films on tantalum[J]. Electronic Components & Materials, 2011, 30(8): 35-39. | |
26 | ZHANG J, MA H, LIU Z. Highly efficient photocatalyst based on all oxides WO3/Cu2O heterojunction for photoelectrochemical water splitting[J]. Applied Catalysis B: Environmental, 2017, 201: 84-91. |
27 | ZHOU Z, WU Z, XU Q, et al. A solar-charged photoelectrochemical wastewater fuel cell for efficient and sustainable hydrogen production[J]. Journal of Materials Chemistry A, 2017, 5(48): 25450-25459. |
28 | FANG H, CAO X, YU J, et al. Preparation of the all-solid-state Z-scheme WO3/Ag/AgCl film on glass accelerating the photodegradation of pollutants under visible light[J]. Journal of Materials Science, 2018, 54(1): 286-301. |
29 | YE Y, YANG H, WANG X, et al. Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts[J]. Materials Science in Semiconductor Processing, 2018, 82: 14-24. |
30 | MOUSAVI M, HABIBI-YANGJEH A. Integration of NiWO4 and Fe3O4 with graphitic carbon nitride to fabricate novel magnetically recoverable visible-light-driven photocatalysts[J]. Journal of Materials Science, 2018, 53(12): 9046-9063. |
31 | LIU C, ZHU H, ZHU Y, et al. Ordered layered N-doped KTiNbO5/g-C3N4 heterojunction with enhanced visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 228: 54-63. |
32 | YUAN X, JIANG L, CHEN X, et al. Highly efficient visible-light-induced photoactivity of Z-scheme Ag2CO3/Ag/WO3 photocatalysts for organic pollutant degradation[J]. Environmental Science: Nano, 2017, 4(11): 2175-2185. |
33 | WANG Q, SUN C, LIU Z, et al. Ultrasound-assisted successive ionic layer adsorption and reaction synthesis of Cu2O cubes sensitized TiO2 nanotube arrays for the enhanced photoelectrochemical performance[J]. Materials Research Bulletin, 2019, 111: 277-283. |
34 | MINGGU L J, NG K H, KADIR H A, et al. Bilayer n-WO3/p-Cu2O photoelectrode with photocurrent enhancement in aqueous electrolyte photoelectrochemical reaction[J]. Ceramics International, 2014, 40(10): 16015-16021. |
35 | WEI S, MA Y, CHEN Y, et al. Fabrication of WO3/Cu2O composite films and their photocatalytic activity[J]. Journal of Hazardous Materials, 2011, 194: 243-249. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[14] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[15] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 489
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 296
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |