1 |
MAVUSO S, MARIMUTHU T, CHOONARA Y E, et al. A review of polymeric colloidal nanogels in transdermal drug delivery[J]. Current Pharmaceutical Design, 2015, 21(20): 2801-2813.
|
2 |
SONI K S, DESALE S S, BRONICH T K. Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation[J]. Journal of Controlled Release, 2016, 240: 109-126.
|
3 |
刘流, 张颂红, 贠军贤, 等. 纳凝胶的制备、性能及应用进展[J]. 化工进展, 2018, 37(12): 209-217.
|
|
LIU Liu, ZHANG Songhong, YUN Junxian, et al. Recent research progress on preparation methods, properties and applications of nanogels[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 209-217.
|
4 |
李霏霏, 张娜. 纳凝胶载体系统的研究进展[J]. 中国药学杂志, 2016, 51(3): 177-182
|
|
LI Feifei, ZHANG Na. Research progress in nanogel carrier systems[J]. Chinese Pharmaceutical Journal, 2016, 51(3): 177-182.
|
5 |
LI Y, MACIEL D, RODRIGUES J, et al. Biodegradable polymer nanogels for drug/nucleic acid delivery[J]. Chemical Reviews, 2015, 115(16): 8564-8608.
|
6 |
DALWADI C, PATEL G. Application of nanohydrogels in drug delivery systems: recent patents review[J]. Recent Patents on Nanotechnology, 2015, 9(1): 17-25.
|
7 |
LI D, NOSTRUM C F VAN, MASTROBATTISTA E, et al. Nanogels for intracellular delivery of biotherapeutics[J]. Journal of Controlled Release, 2017, 259: 16-28.
|
8 |
LAPEYRE V, GOSSE I, CHEVREUX S, et al. Monodispersed glucose-responsive microgels operating at physiological salinity[J]. Biomacromolecules, 2006, 7(12): 3356-3363.
|
9 |
RAMOS J, IMAZ A, FORCADA J. Temperature-sensitive nanogels: poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide)[J]. Polymer Chemistry, 2011, 3(4): 852-856.
|
10 |
GOSWAMI N, LIN F, LIU Y, et al. Highly luminescent thiolated gold nanoclusters impregnated in nanogel[J]. Chemistry of Materials, 2016, 28(11): 4009-4016.
|
11 |
查刘生, 王秀琴, 邹先波, 等. 智能纳米水凝胶的制备及其刺激响应性能和应用研究进展[J]. 石油化工, 2012, 41(2): 131-142.
|
|
ZHA Liusheng, WANG Xiuqin, ZOU Xianbo, et al. Progresses in investigation of preparation, stimulus responsive properties and application of intelligent nano-hydrogels[J]. Petrochemical Technology, 2012, 41(2): 131-142.
|
12 |
杨猛, 王德鹏, 刘凤岐. 智能水凝胶应用研究进展[J]. 化工科技, 2013, 21(3): 72-75.
|
|
YANG Meng, WANG Depeng, LIU Fengqi. Research progress on application of intelligent hydrogel[J]. Science & Technology in Chemical Industry, 2013, 21(3): 72-75.
|
13 |
刘流. 纳晶胶的制备及性能研究[D]. 杭州: 浙江工业大学, 2018.
|
|
LIU Liu. Preparation and properties of nano-cryogels[D]. Hangzhou: Zhejiang University of Technology, 2018.
|
14 |
倪正. 苯乳酸微生物转化合成与晶胶分离研究[D]. 杭州: 浙江工业大学, 2016.
|
|
NI Zheng. Microbial synthesis and chromatographic separation of phenyllactic acid by cryogels[D]. Hangzhou: Zhejiang University of Technology, 2016.
|
15 |
FAN X, JIA X, LIU J, et al. Morphology evolution of poly(glycidyl methacrylate) colloids in the 1,1-diphenylethene controlled soap-free emulsion polymerization[J]. European Polymer Journal, 2017, 92: 220-232.
|
16 |
LI R Q, WU W, SONG H Q, et al. Well-defined reducible cationic nanogels based on functionalized low-molecular-weight PGMA for effective pDNA and siRNA delivery[J]. Acta Biomaterialia, 2016, 41: 282-292.
|
17 |
JIANG S, KAI D, DOU Q Q, et al. Multi-arm carriers composed of antioxidant lignin core and poly(glycidyl methacrylate-co-poly(ethylene glycol) methacrylate) derivative arms for highly efficient gene delivery[J]. Journal of Materials Chemistry B, 2015, 3(34): 6897-6904.
|
18 |
HU Y, ZHU Y, YANG W T, et al. New star-shaped carriers composed of β-cyclodextrin cores and disulfide-linked poly(glycidyl methacrylate) derivative arms with plentiful flanking secondary amine and hydroxyl groups for highly efficient gene delivery[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 703-712.
|
19 |
SONG Y, YE G, LU Y, et al. Surface-initiated argetatrp of poly(glycidyl methacrylate) from carbon nanotubes via bioinspired catechol chemistry for efficient adsorption of uranium ions[J]. ACS Macro Letters, 2016, 5(3): 382-386
|
20 |
XU L, CUI P, WANG D, et al. Preparation and characterization of lysine-immobilized poly(glycidyl methacrylate) nanoparticle-coated capillary for the separation of amino acids by open tubular capillary electrochromatography[J]. Journal of Chromatography A, 2014, 1323(1): 179-183.
|
21 |
OH J, LEE J H, KOO J C, et al. Graphene oxide porous paper from amine-functionalized poly(glycidyl methacrylate)/graphene oxide core-shell microspheres[J]. Journal of Materials Chemistry, 2010, 20(41): 9200-9204.
|
22 |
HAJIZADEH S, MATTIASSON B, KIRSEBOM H. Flow-through-mediated surface immobilization of sub-micrometre particles in monolithic cryogels[J]. Macromolecular Materials and Engineering, 2014, 299(5): 631-638.
|
23 |
TAO S P, WANG C, SUN Y. Coating of nanoparticles on cryogel surface and subsequent double-modification for enhanced ion-exchange capacity of protein[J]. Journal of Chromatography A, 2014, 1359: 76-83.
|
24 |
SASAKI Y, AKIYOSHI K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications[J]. Chemical Record, 2010, 10(6): 366-376.
|
25 |
CHENG R, MENG F, DENG C, et al. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery[J]. Biomaterials, 2013, 34(14): 3647-3657.
|
26 |
GUO M, QUE C, WANG C, et al. Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery[J]. Biomaterials, 2011, 32(1): 185-194.
|