化工进展 ›› 2019, Vol. 38 ›› Issue (02): 726-739.DOI: 10.16085/j.issn.1000-6613.2018-1145
收稿日期:
2018-05-30
修回日期:
2018-10-01
出版日期:
2019-02-05
发布日期:
2019-02-05
通讯作者:
杨志刚
作者简介:
<named-content content-type="corresp-name">刘毋凡</named-content>(1993—),男,硕士研究生,研究方向为受激辐射损耗超分辨成像及荧光寿命成像。E-mail:<email>749969710@qq.com</email>。|杨志刚,副教授,硕士生导师,研究方向为生物光子学影像材料、超分辨成像及荧光寿命成像。E-mail:<email>zhgyang@szu.edu.cn</email>。
基金资助:
Wufan LIU(),Chufang CHEN,Wenhui PAN,Jia XIONG,Junle QU,Zhigang YANG()
Received:
2018-05-30
Revised:
2018-10-01
Online:
2019-02-05
Published:
2019-02-05
Contact:
Zhigang YANG
摘要:
受激辐射损耗超分辨成像可突破光学衍射极限的限制,获得纳米尺寸结构的超精细图像,荧光探针发挥了重要作用。本文主要介绍了受激辐射损耗超分辨显微成像的相关概念,包括基础光学概念、受激辐射损耗超分辨成像原理、成像系统,总结了受激辐射损耗超分辨成像荧光探针及其应用等研究进展,相信本工作能帮助化学、化工领域相关工作者了解受激辐射超分辨成像研究及其生物成像应用,尤其是可以用于该成像技术的荧光探针的相关知识,为设计、制备有效的受激辐射超分辨荧光探针提供设计思路。本文为荧光探针在生物医学光学领域的应用提出了新的需求与机遇,为化学、化工领域相关研究方向与光学成像领域的深度交叉与融合提供了新的发展契机。
中图分类号:
刘毋凡, 陈楚芳, 潘文慧, 熊佳, 屈军乐, 杨志刚. 受激辐射损耗超分辨荧光成像探针研究进展[J]. 化工进展, 2019, 38(02): 726-739.
Wufan LIU, Chufang CHEN, Wenhui PAN, Jia XIONG, Junle QU, Zhigang YANG. Research progress on stimulated emission depletion using fluorescent probes[J]. Chemical Industry and Engineering Progress, 2019, 38(02): 726-739.
1 | ABBE E . Beiträge zur theori des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 1873, 9: 413-418. |
2 | HELMHOLTZ H VON . Die theoretische grenze für die leistungsfähigkeit der mikroskope[J]. Aus Poggendorff’s Annalen Jubelband, 1874(s): 557-584. |
3 | HELL S W , KROUG M . Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limits[J]. Applied Physics B: Lasers Optics, 1995, 60(5): 495-497. |
4 | HARKE B , ELLER J , ULLAL C K , et al . Resolution scaling in STED microscopy[J]. Optics Express, 2008, 16(6): 4154-4162. |
5 | HELL S W , JAKOBS S , KASTRUP L . Imaging and writing at the nanoscale with focused visible light through saturable optical transitions[J]. Applied Physics A: Materials Science Process, 2003, 77(7): 859-860. |
6 | HELL S W . Strategy for far-field optical imaging and writing without diffraction limit[J]. Physics Letters A, 2004, 326(1/2): 140-145. |
7 | HEINTZMANN R , CREMER C G . Lateral modulated excitation microscopy: improvement of resolution by using a diffraction grating[J]. Proceeding of Society Photonics International Electronics, 1998, 3568:185-196. |
8 | FROHN J T , KNAPP H F , STEMMER A . True optical resolution beyond the Rayleigh limit achieved by standing wave illumination[J]. Proceedings of the National Academy of Sciences U.S. A ., 2000, 97 (13): 7232-7236. |
9 | GUSTAFSSON M G L . Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal Microscopy, 2000, 198: 82-87. |
10 | GUSTAFSSON M G L . Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences U.S.A., 2005, 102(37): 13081-13086. |
11 | BETZIG E , PATTERSON G H , SOUGRAT R ,et al . Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313 (5793): 1642-1645. |
12 | RUST M J , BATES M , ZHUANG X . Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-795. |
13 | HESS S T , GIRIRAJAN T P K , MASON M D . Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 2006, 91(11): 4258-4272. |
14 | DICKSON R M , CUBITT A B , TSIEN R Y , et al . On/off blinking and switching behavior of single molecules of green fluorescent protein[J]. Nature, 1997, 388(6640): 355-358. |
15 | PATTERSON G H , LIPPINCOTT-SCHWARTZ J . A photoactivatable GFP for selective photolabeling of proteins and cells[J]. Science, 2002, 297(5588): 1873-1877. |
16 | HARKE B , KELLERR J , ULLAL C K , et al . Resolution scaling in STED microscopy[J]. Optics Express, 2008, 16(6): 4154-4162. |
17 | HELL S W , JAKOBS S , KASTRUP L . Imaging and writing at the nanoscale with focused visible light through saturable optical transitions[J]. Applied Physics A: Material Science Process, 2003, 77(7): 859-860. |
18 | HELL S W . Strategy for far-field optical imaging and writing without diffraction limit[J]. Physics Letters A, 2004, 326(1/2): |
140−145. | |
19 | DERTINGER T , COLYER R , IYER G , et al . Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[J]. Proceedings of National Academy Sciences U.S.A., 2009, 106(52): 22287-22292. |
20 | DERTINGER T , COLYER R , VOGEL R , et al . Achieving increased resolution and more pixels with superresolution optical fluctuation imaging [J]. Optics Express, 2010, 18(18): 18875-18885. (SOFI) |
21 | WU D , SHEN Y , CHEN J , et al . Naphthalimide-modified near-infrared cyanine dye with a large stokes shift and its application in bioimaging[J]. Chinese Chemical Letters, 2017, 28: 1979-1982. |
22 | XU Z , CHEN J , HU L-L , et al . Recent advances in formaldehyde-responsive fluorescent probes[J]. Chinese Chemical Letters, 2017, 28: 1935-1942. |
23 | HOTTA J , FRON E , DEDECKER P , et al . Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores[J]. Journal of American Chemical Society, 2010, 132: 5021-5023. |
24 | WURM C A , KOLMAKOV K , GOTTERT F , et al . Novel red fluorophores with superior performance in STED microscopy[J]. Optical Nanoscopy, 2012, 1:7. |
25 | SCHILL H , NIZAMOV S , BOTANELLI F , et al . 4-Trifluoromethyl-substituted coumarins with large stokes shifts: synthesis, bioconjugates, and their use in super-resolution fluorescence microscopy[J]. Chemistry: European Journal, 2013, 19: 16556–16565. |
26 | ERDMANN R S , TAKAKURA H , THOMPSON A D ,et al . Super-resolution imaging of the golgi in live cells with a bioorthogonal ceramide probe[J]. Angewandte Chemie International Edition, 2014, 53(38): 10242-10246. |
27 | LUKINAVIČIUS G , REYMOND L , ĎESTE E , et al . Fluorogenic probes for live-cell imaging of the cytoskeleton[J]. Nature Methods, 2014, 11: 731-737. |
28 | ĎESTE E , KAMIN D , GÖTTFERT F , et al . STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons[J]. Cell Reports, 2015, 10: 1246-1251. |
29 | KOLMAKOV K , HEBISCH E , WOLFRAM T , et al . Far-red emitting fluorescent dyes for optical nanoscopy: fluorinated silicon-rhodamines (SiRF dyes) and phosphorylated oxazines[J]. Chemistry : European Journal, 2015, 21: 13344-13356. |
30 | KASPER R , HARKE B , FORTHMANN C , et al . Single-molecule STED microscopy with photostable organic fluorophores[J]. Small, 2010, 6: 1379-1384. |
31 | HONIGMANN A , MUELLER V , TA H, et al . Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells[J]. Nature Communications, 2014, 5: 5412-5423. |
32 | VICIDOMINI G , TA H, HONIGMANN A , et al . STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics[J]. Nano Letters, 2015, 15(9): 5912-5918. |
33 | HANNE J , FALK H J , GÖRLITZ F ,et al . STED nanoscopy with fluorescent quantum dots[J]. Nature Communications, 2015, 6: 7127-7135. |
34 | PERSSON F , BINGEN P , STAUDT T , et al . Fluorescence nanoscopy of single DNA molecules by using stimulated emission depletion (STED) [J]. Angewandte Chemie International Edition, 2011, 50: 5581-5583. |
35 | LUKINAVIČIUS G , BLAUKOPF C , PERSHAGEN E , et al . SiR-Hoechst is a far-Red DNA stain for live-cell nanoscopy[J]. Nature Communications, 2015, 6: 8497-8505. |
36 | HOFMANN M , EGGELING C , JAKOBS S , et al . Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins[J]. Proceedings of National Academy Sciences U.S.A.,2005, 102: 17565-17569. |
37 | HELL S W , JAKOBS S , KASTRUP L . Imaging and writing at the nanoscale with focused visible light through saturable optical transitions[J]. Applied Physics A, 2003, 77: 859-860. |
38 | LUKINAVIČIUS G , BLAUKOPF C , PERSHAGEN E , et al . SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy[J]. Nature Communications, 2015, 6: 8497-8505. |
39 | LAVIOE-CARDINAL F , JENSEN N A , WESTPHAL V , et al . Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics[J]. ChemPhysChem, 2014, 15: 655-663. |
40 | BRAKEMANN T , STIEL A C , WEBER G ,et al . A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching[J]. Nature Biotechnology, 2011, 29: 942-947. |
41 | GROTJOHANN T , TESTA I , LEUTENEGGER M , et al . Diffraction-unlimited all-optical imaging and writing with a photochromic GFP[J]. Nature, 2011, 478: 204-208. |
42 | LI D , QIN W , XU B , QIAN J , et al . AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging[J]. Advanced Materials, 2017, 29: 1703643-1703451. |
43 | HANNE J , FALK H J , GÖRLITZ F , et al . STED nanoscopy with fluorescent quantum dots[J]. Nature Communications, 2015, 6: 7217-7222. |
44 | LIU Y J , LU Y Q , YANG X S , et al . Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy[J]. Nature, 2017, 543: 229-233. |
45 | YE S , YAN W , ZHAO M , et al . Low-saturation-intensity, high-photostability, and high resolution STED nanoscopy assisted by CsPbBr3 quantum dots[J]. Advanced Materials, 2018, 30(23): 1800167. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 邱沫凡, 蒋琳, 刘荣正, 刘兵, 唐亚平, 刘马林. 气固流化床化学反应数值模拟中颗粒尺度模型研究进展[J]. 化工进展, 2023, 42(10): 5047-5058. |
[3] | 于姗, 段元刚, 张怡欣, 唐春, 付梦瑶, 黄靖元, 周莹. 分步法分解硫化氢制氢和硫黄催化剂研究进展[J]. 化工进展, 2023, 42(7): 3780-3790. |
[4] | 路建美. 柔性吸附材料最新研究进展[J]. 化工进展, 2023, 42(6): 2781-2798. |
[5] | 陶梦琦, 刘美红, 康宇驰. 基于micro-PIV的微通道内流体绕流单微圆柱和并联双微圆柱流场特性[J]. 化工进展, 2023, 42(6): 2836-2844. |
[6] | 吕学东, 罗发亮, 林海涛, 宋丹青, 刘义, 牛瑞雪, 郑柳春. 聚丁二酸丁二醇酯的合成工艺及气体阻隔性最新进展[J]. 化工进展, 2023, 42(5): 2546-2554. |
[7] | 庞楠炯, 王晓玲, 廖学品, 石碧. 胶原纤维固化黑荆树单宁对硼同位素的分离[J]. 化工进展, 2023, 42(5): 2616-2625. |
[8] | 田园, 娄舒洁, 孟闪茹, 闫敬如, 肖海成. 合成气制高碳醇钴基催化剂研究进展[J]. 化工进展, 2023, 42(4): 1869-1876. |
[9] | 张晨光, 封硕, 邢玉烨, 沈伯雄, 苏立超. 柴油车用NH3-SCR铜基分子筛催化剂孤立态Cu2+研究进展[J]. 化工进展, 2023, 42(3): 1321-1331. |
[10] | 尚小标, 李广超, 肖利平, 白永珍, 肖人友, 李佳剑, 张志浩. 大温度梯度下含锆型硅酸铝纤维板的透波性能[J]. 化工进展, 2023, 42(3): 1551-1561. |
[11] | 段一航, 高宁博, 全翠. 水热处理对含油污泥热解特性及动力学影响[J]. 化工进展, 2023, 42(2): 603-613. |
[12] | 黄伟, 储政, 任磊, 李珊. 碳基固体酸在硝基苯加氢制备对氨基苯酚中的应用[J]. 化工进展, 2023, 42(1): 272-281. |
[13] | 滕欣余, 张国华, 胡辰树, 朱成, 于丹, 刘頔, 刘沙. 我国典型城市氢能经济性和低成本氢源探索分析[J]. 化工进展, 2022, 41(12): 6295-6301. |
[14] | 万年坊. 质子交换膜水电解制氢膜电极研究进展[J]. 化工进展, 2022, 41(12): 6385-6394. |
[15] | 陈毓, 王佳佳, 汤琳. 漂浮型氮化碳光催化剂CNx@mEP的制备及性能[J]. 化工进展, 2022, 41(12): 6477-6488. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |