化工进展 ›› 2019, Vol. 38 ›› Issue (02): 740-751.DOI: 10.16085/j.issn.1000-6613.2017-2641
收稿日期:
2017-12-21
修回日期:
2018-01-26
出版日期:
2019-02-05
发布日期:
2019-02-05
通讯作者:
李建隆
作者简介:
<named-content content-type="corresp-name">李鑫</named-content>(1992—),男,博士研究生,研究方向为传质与分离工程。E-mail:<email>qdlx2015@126.com</email>。|李建隆,教授,博士生导师,研究方向为多相流体的流动与分离。E-mail:<email>ljlong@qust.edu.cn</email>。
基金资助:
Xin LI1,2(),Pan ZHANG2,3,Guanghui CHEN1,2,Jianlong LI1,2()
Received:
2017-12-21
Revised:
2018-01-26
Online:
2019-02-05
Published:
2019-02-05
Contact:
Jianlong LI
摘要:
在工业生产过程中,气泡在液相中的上升行为及气液界面的传质行为极为常见。本文针对不同条件下气泡上升过程的实验研究方法以及数值计算方法进行了总结。从实验与数值计算的角度,综述了单气泡上升过程的影响因素、多气泡上升过程聚并与破裂的现象和机理以及工业装置中气液两相流型和气泡特性,并对传质模型进行了归纳,主要关注了气侧-界面传质模型的研究现状。综述结果表明:当前对于单气泡上升行为的研究较为充分,而对于多气泡的行为机理的研究尚需深入。此外,受到研究手段的限制,进行气侧-界面传质模型研究具有一定挑战性。针对当前的相关研究进展和存在的问题,对今后气泡上升行为和传质行为的研究提出以下建议,即开展气泡聚并与破裂可控性研究,强化对气侧-界面传质过程的研究,包括泡内流体行为可视化研究和相关传质模型的建立。
中图分类号:
李鑫, 张攀, 陈光辉, 李建隆. 液相中气泡上升行为与界面传质:实验研究与数值计算[J]. 化工进展, 2019, 38(02): 740-751.
Xin LI, Pan ZHANG, Guanghui CHEN, Jianlong LI. Rising behavior of bubbles and interfacial mass transfer in liquid: experimental study and numerical simulation[J]. Chemical Industry and Engineering Progress, 2019, 38(02): 740-751.
多相流数值计算模型 | 优点 | 缺点 |
---|---|---|
边界积分法[ | 计算量小,能准确模拟表面张力效应 | 难以模拟流场的拓扑变化和黏性效应 |
界面追踪法[ | 计算精确度较高 | 处理拓扑几何变化计算量大 |
水平集方法[ | 模拟相界面动态行为效果较好 | 处理三维数值模拟效果不理想 |
流体体积函数模型 | 利用几何重构实现界面追踪,可清晰地区分各相主体以及界面 | 计算光滑几何特性精确度偏低 |
水平集-流体体积函数耦合法[ | 模拟界面及流场变化效果较好 | 计算过程复杂,计算量较大 |
混合模型[ | 可模拟各相速度不同的多相流以及强烈耦合的各向同性多相流 | 对界面特性的计算结果不理想 |
欧拉模型 | 计算精确度较高,适用范围广 | 由于各相采用不同动量方程描述,导致计算量很大 |
表1 多相流数值计算模型及其优缺点
多相流数值计算模型 | 优点 | 缺点 |
---|---|---|
边界积分法[ | 计算量小,能准确模拟表面张力效应 | 难以模拟流场的拓扑变化和黏性效应 |
界面追踪法[ | 计算精确度较高 | 处理拓扑几何变化计算量大 |
水平集方法[ | 模拟相界面动态行为效果较好 | 处理三维数值模拟效果不理想 |
流体体积函数模型 | 利用几何重构实现界面追踪,可清晰地区分各相主体以及界面 | 计算光滑几何特性精确度偏低 |
水平集-流体体积函数耦合法[ | 模拟界面及流场变化效果较好 | 计算过程复杂,计算量较大 |
混合模型[ | 可模拟各相速度不同的多相流以及强烈耦合的各向同性多相流 | 对界面特性的计算结果不理想 |
欧拉模型 | 计算精确度较高,适用范围广 | 由于各相采用不同动量方程描述,导致计算量很大 |
气液体系 | 多相流 模型 | 气泡类型 | 作者及发表年份 |
---|---|---|---|
空气-水 | VOF | 多气泡 | 王乐等[ |
空气-水 | VOF | 多气泡 | Zhang等[ |
空气-水 | VOF | 多气泡 | Akhtar等[ |
空气-水 | VOF | 单气泡 | 程军明等[ |
空气-水 | VOF | 单气泡 | Guan等[ |
空气-水 | VOF | 单气泡 | 蔡杰进等[ |
空气-水 | VOF | 单气泡 | 赵婷婷等[ |
空气-水 | VOF | 单气泡 | 徐玲君等[ |
空气-水 | VOF | 单气泡 | Goel等[ |
空气-水 | Eulerian | 多气泡 | Pourtousi等[ |
空气-水 | Eulerian | 多气泡 | Rampure等[ |
空气-水 | Eulerian | 多气泡 | Chen等[ |
空气-水 | Eulerian | 多气泡 | Sanyal等[ |
空气-水 | Eulerian | 单气泡 | 鞠花等[ |
空气-羧甲基纤维素钠溶液 | VOF | 单气泡 | Premlata等[ |
空气-0.4%羧甲基纤维素钠溶液 | VOF | 多气泡 | Liu等[ |
空气-0.5%羧甲基纤维素钠溶液 | VOF | 多气泡 | Liu等[ |
空气-甘油+水 | VOF-IB | 单气泡/多气泡 | Baltussen等[ |
空气-水/甘油+水 | VOF | 单气泡 | Rabha等[ |
氮气-离子液体 | VOF | 单气泡 | Wang等[ |
空气-液态流体(未公开) | VOF | 单气泡 | Taha等[ |
表2 不同气液相体系中气泡上升行为研究统计表
气液体系 | 多相流 模型 | 气泡类型 | 作者及发表年份 |
---|---|---|---|
空气-水 | VOF | 多气泡 | 王乐等[ |
空气-水 | VOF | 多气泡 | Zhang等[ |
空气-水 | VOF | 多气泡 | Akhtar等[ |
空气-水 | VOF | 单气泡 | 程军明等[ |
空气-水 | VOF | 单气泡 | Guan等[ |
空气-水 | VOF | 单气泡 | 蔡杰进等[ |
空气-水 | VOF | 单气泡 | 赵婷婷等[ |
空气-水 | VOF | 单气泡 | 徐玲君等[ |
空气-水 | VOF | 单气泡 | Goel等[ |
空气-水 | Eulerian | 多气泡 | Pourtousi等[ |
空气-水 | Eulerian | 多气泡 | Rampure等[ |
空气-水 | Eulerian | 多气泡 | Chen等[ |
空气-水 | Eulerian | 多气泡 | Sanyal等[ |
空气-水 | Eulerian | 单气泡 | 鞠花等[ |
空气-羧甲基纤维素钠溶液 | VOF | 单气泡 | Premlata等[ |
空气-0.4%羧甲基纤维素钠溶液 | VOF | 多气泡 | Liu等[ |
空气-0.5%羧甲基纤维素钠溶液 | VOF | 多气泡 | Liu等[ |
空气-甘油+水 | VOF-IB | 单气泡/多气泡 | Baltussen等[ |
空气-水/甘油+水 | VOF | 单气泡 | Rabha等[ |
氮气-离子液体 | VOF | 单气泡 | Wang等[ |
空气-液态流体(未公开) | VOF | 单气泡 | Taha等[ |
1 | ÁLVAREZ E , SANJURJO B , CANCELA A , et al . Mass transfer and influence of physical properties of solutions in a bubble column[J]. Chemical Engineering Research and Design, 2000, 78(6): 889-893. |
2 | CHU F M , YANG L J , DU X Z , et al . Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column[J]. Applied Energy, 2017, 190: 1068-1080. |
3 | ZHANG L H , LI Z J , YANG N , et al . Hydrodynamics and mass transfer performance of vapor-liquid flow of orthogonal wave tray column[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63: 6-16. |
4 | 付涛涛, 马友光, 朱春英 . T形微通道内气泡(液滴)生成机理的研究进展[J]. 化工进展, 2011, 30(11): 2357-2363. |
FU Taotao , Youguang MA , ZHU Chunying . Progress in bubble(droplet) formation mechanism in T-shaped microchannels[J]. Chemical Industry and Engineering Progress, 2011, 30(11): 2357-2363. | |
5 | 庞明军, 孙涛, 代军荣 . 槽道湍流内气泡瞬态受力数值研究[J]. 化工进展, 2016, 35(7): 1980-1985. |
PANG Mingjun , SUN Tao , DAI Junrong . Numerical investigation on instantaneous forces exerting on bubbles in channel turbulent flows[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 1980-1985. | |
6 | KOIDE K , MOROOKA S , UEYAMA K , et al . Behavior of bubbles in large scale bubble column[J]. Journal of Chemical Engineering of Japan, 1978, 12: 98-104. |
7 | ZHANG X B , GUO K , QI W Z , et al . Gas holdup, bubble behaviour, and mass transfer characteristics in a two-stage internal loop airlift reactor with different screens[J]. The Canadian Journal of Chemical Engineering, 2017, 95(6): 1202-1212. |
8 | 邹晓燕, 姚克俭 . 被动式DMFC 阳极通道气泡行为的实验研究[J]. 化工进展, 2011, 30(7): 1444-1449. |
ZOU Xiaoyan , YAO Kejian . Experimental investigation on bubbling behavior in anode channel of passive DMFC[J]. Chemical Industry and Engineering Progress, 2011, 30(7): 1444-1449. | |
9 | FENG J J , LI X C , BAO Y Y , et al . Coalescence and conjunction of two in-line bubbles at low Reynolds numbers[J]. Chemical Engineering Science, 2016, 141: 261-270. |
10 | NGUYEN V T , SONG C-H , B-U BAE , et al . Modeling of bubble coalescence and break-up considering turbulent suppression phenomena in bubbly two-phase flow[J]. International Journal of Multiphase Flow, 2013, 54: 31-42. |
11 | UEYAMA K , MOROOKA S , KOIDE K , et al . Behavior of gas bubbles in bubble columns[J]. Ind. Eng. Chem. Process Des. Dev., 1980, 19: 592-599. |
12 | SANADA T , SATO A , SHIROTA M , et al . Motion and coalescence of a pair of bubbles rising side by side[J]. Chemical Engineering Science, 2009, 64(11): 2659-2671. |
13 | LEGENDRE D , ZEVENHOVEN R . Detailed experimental study on the dissolution of CO2 and air bubbles rising in water[J]. Chemical Engineering Science, 2017, 158: 552-560. |
14 | AOKI J , HAYASHI K , TOMIYAMA A . Mass transfer from single carbon dioxide bubbles in contaminated water in a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2015, 83: 652-658. |
15 | BOHM L , BREHMER M , KRAUME M . Comparison of the single bubble ascent in a newtonian and a non-newtonian liquid: a phenomenological PIV study[J]. Chemie Ingenieur Technik, 2016, 88(1/2): 93-106. |
16 | POURTOUSI M , GANESAN P , KAZEMZADEH A , et al . Methane bubble formation and dynamics in a rectangular bubble column: a CFD study[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 147: 111-120. |
17 | 许联锋, 陈刚, 李建中, 等 . 粒子图像测速技术研究进展[J]. 力学进展, 2003, 33(4): 533-540. |
XU Lianfeng , CHEN Gang , LI Jianzhong , et al . Progress in the research of particle image velocimetry[J]. Advances in Mechanics, 2003, 33(4): 533-540. | |
18 | FUNFSCHILLING D , LI H Z . Flow of non-Newtonian fluids around bubbles: PIV measurements and birefringence visualisation[J]. Chemical Engineering Science, 2001, 56: 1137-1141. |
19 | SAITO T , TORIU M . Effects of a bubble and the surrounding liquid motions on the instantaneous mass transfer across the gas-liquid interface[J]. Chemical Engineering Journal, 2015, 265: 164-175. |
20 | HUANG J , SAITO T . Influences of gas-liquid interface contamination on bubble motions, bubble wakes, and instantaneous mass transfer[J]. Chemical Engineering Science, 2017, 157: 182-199. |
21 | HANYU K , SAITO T . Dynamical mass-transfer process of a CO2 bubble measured by using LIF/HPTS visualisation and photoelectric probing[J]. The Canadian Journal of Chemical Engineering, 2010, 88: 551-560. |
22 | NOCK W J , HEAVEN S , BANKS C J . Mass transfer and gas-liquid interface properties of single CO2 bubbles rising in tap water[J]. Chemical Engineering Science, 2016, 140: 171-178. |
23 | JIN H B , YANG S H , ZHANG T W , et al . Bubble behavior of a large-scale bubble column with elevated pressure[J]. Chemical Engineering & Technology, 2004, 27: 1007-1013. |
24 | BAKER G R , MOORE D W . The rise and distortion of a two-dimensional gas bubble in an inviscid liquid[J]. Physics of Fluids A: Fluid Dynamics, 1989, 1(9): 1451-1459. |
25 | ZHANG Y L , YEO K S, KHOO B C , et al . 3D jet impact and toroidal bubbles[J]. Journal of Computational Physics, 2001, 166(2): 336-360. |
26 | SUSSMAN M , SMEREKA P . Axisymmetric free boundary problems[J]. Journal of Fluid Mechanics, 1997, 341: 269-294. |
27 | OSHER S , SETHIAN J A . Fronts propagating with curvature-dependent speed:algorithms based on hamilton-jacobi formulations[J]. Journal of Computational Physics, 1988, 79: 12-49. |
28 | SUSSMAN M . A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles[J]. Journal of Computational Physics, 2003, 187(1): 110-136. |
29 | WANG C Y , CHENG P . A multiphase mixture model for multiphase, multicomponent transport in capillary porous media I. Model development[J]. International Journal of Heat & Mass Transfer, 1996, 39(17): 3607-3618. |
30 | 王乐, 曹洲榕, 郑西朋, 等 . 三气泡上升聚并的数值模拟研究[C]//全国水环境污染控制与生态修复技术高级研讨会, 2016. |
WANG Le , CAO Zhourong , ZHENG Xipeng , et al . Research on numerical simulation of motion behaviors of three bubbles rising in water[C]// Advanced Seminar on Water Environment Pollution Control and Ecological Restoration Technology, 2016. | |
31 | ZHANG Y J , LIU M Y , XU Y G , et al . Three-dimensional volume of fluid simulations on bubble formation and dynamics in bubble columns[J]. Chemical Engineering Science, 2012, 73: 55-78. |
32 | AKHTAR A , PAREEK V , TAD M . CFD simulations for continuous flow of bubbles through gas-liquid columns: application of VOF method[J]. Chemical Product and Process Modeling, 2007, 2(1): 1-19. |
33 | 程军明, 吴伟烽, 聂娟, 等 . 气泡在静水中上升破裂产生射流特性的数值模拟[J]. 江苏大学学报, 2014, 35(5): 513-517. |
CHENG Junming , WU Weifeng , NIE Juan , et al . Numerical simulation of bubbles rising and bursting under buoyancy effect in static water[J]. Journal of Jiangsu University, 2014, 35(5): 513-517. | |
34 | GUAN X P , LI Z Q , WANG L J , et al . CFD simulation of bubble dynamics in bubble columns with internals[J]. Industrial & Engineering Chemistry Research, 2014, 53(42): 16529-16538. |
35 | 蔡杰进, 曾庆允, 渡边正 . 基于OpenFOAM的气泡上升特性数值模拟[J]. 热力发电, 2013, 42(9): 24-31. |
CAI Jiejin , ZENG Qingyun , Tadashi WATANABE . OpenFOAM based numerical simulation on rising characteristics of bubbles[J]. Thermal Power Generation, 2013, 42(9): 24-31. | |
36 | 赵婷婷, 刘赵淼, 申峰 . 水中单个气泡上升过程中的变形与破碎的数值模拟[C]//北京力学会第19届学术年会, 2013. |
ZHAO Tingting , LIU Zhaomiao , SHEN Feng . Numerical simulation of deformation and breakage of single bubbles in water[C]//The 19th Annual Academic Conference of the Beijing Institute of Technology, 2013. | |
37 | 徐玲君, 陈刚, 邵建斌, 等 . 单个气泡静水中上升特性的数值模拟[J]. 沈阳农业大学学报, 2012, 43(3): 357-361. |
XU Lingjun , CHEN Gang , SHAO Jianbin , et al . Numerical simulation of motion behavior of single bubble rising in still water[J]. Journal of Shenyang Agricultural University, 2012, 43(3): 357-361. | |
38 | GOEL D , BUWA V V . Numerical simulations of bubble formation and rise in microchannels[J]. Industrial & Engineering Chemistry Research, 2009, 48: 8109-8120. |
39 | POURTOUSI M , GANESAN P , SAHU J N . Effect of bubble diameter size on prediction of flow pattern in Euler-Euler simulation of homogeneous bubble column regime[J]. Measurement, 2015, 76: 255-270. |
40 | RAMPURE M R , KULKARNI A A , RANADE V V . Hydrodynamics of bubble column reactors at high gas velocity: experiments and computational fluid dynamics(CFD) simulations[J]. Industrial & Engineering Chemistry Research, 2007, 46: 8431-8447. |
41 | CHEN P , SANYAL J , DUDUKOVIĆ M P . Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures[J]. Chemical Engineering Science, 2005, 60(4): 1085-1101. |
42 | SANYAL J , VASQUEZ S , ROY S, et al . Numerical simulation of gas-liquid dynamics in cylindrical bubble column reactors[J]. Chemical Engineering Science, 1999, 54: 5071-5083. |
43 | 鞠花, 陈刚, 李国栋 . 静水中气泡上升运动特性的数值模拟研究[J]. 西安理工大学学报, 2011, 27(3): 344-349. |
JU Hua , CHEN Gang , LI Guodong . Research on numerical simulation of motion behaviors of single bubble rising in still water[J]. Journal of Xi’an University of Technology, 2011, 27(3): 344-349. | |
44 | PREMLATA A R , TRIPATHI M K , KARRI B , et al . Dynamics of an air bubble rising in a non-Newtonian liquid in the axisymmetric regime[J]. Journal of Non-Newtonian Fluid Mechanics, 2017, 239: 53-61. |
45 | LIU J R , ZHU C Y , FU T T , et al . Systematic study on the coalescence and breakup behaviors of multiple parallel bubbles rising in power-law fluid[J]. Industrial & Engineering Chemistry Research, 2014, 53(12): 4850-4860. |
46 | LIU J R , ZHU C Y , FU T T , et al . Numerical simulation of the interactions between three equal-interval parallel bubbles rising in non-Newtonian fluids[J]. Chemical Engineering Science, 2013, 93: 55-66. |
47 | BALTUSSEN M W , SEGERS Q I E , KUIPERS J A M , et al . Cutting bubbles with a single wire[J]. Chemical Engineering Science, 2017, 157: 138-146. |
48 | RABHA S S , BUWA V V . Volume-of-fluid(VOF) simulations of rise of single/multiple bubbles in sheared liquids[J]. Chemical Engineering Science, 2010, 65(1): 527-537. |
49 | WANG X L , DONG H F , ZHANG X P , et al . Numerical simulation of single bubble motion in ionic liquids[J]. Chemical Engineering Science, 2010, 65(22): 6036-6047. |
50 | TAHA T , CUI Z F . Hydrodynamics of slug flow inside capillaries[J]. Chemical Engineering Science, 2004, 59(6): 1181-1190. |
51 | LIN T J , TSUCHIYA K , FAN L S . Bubble flow characteristics in bubble columns at elevated pressure and temperature[J]. AIChE Journal, 1998, 44(3): 545-560. |
52 | LI Y , ZHANG J P , FAN L S . Discrete-phase simulation of single bubble rise behavior at elevated pressures in a bubble column[J]. Chemical Engineering Science, 2000, 55: 4597-4609. |
53 | KHURANA A K , KUMAR R . Studies in bubble formation-III[J]. Chemical Engineering Science, 1969, 24: 1711. |
54 | HUGHES R R , HANDLOS A E , EVANS H D , et al . The formation of bubbles at simple orifices[J]. Chemical Engineering Progress, 1955, 51(12): 557. |
55 | DATTA R L , NAPIER D H , NEWITT D M . The properties and behaviour of gas bubbles formed at a circular orifice[J]. Transactions of the Institution of Chemical Engineers, 1950, 28: 14. |
56 | IDOGAWA K , IKEDA K , FUKUDA T , et al . Formation and flow of gas bubbles in a pressurized bubble column with a single orifice or nozzle gas distributor[J]. Chemical Engineering Communications, 2010, 59(1/2/3/4/5/6): 201-212. |
57 | WILKINSON P M . Physical aspects and scale-up of high pressure bubble columns[D]. Netherland: University of Groningen, 1991. |
58 | TSUGE H , HIBINO S I . Bubble formation from an orifice submerged in liquids[J]. Chemical Engineering Communications, 1983, 22(1/2): 63-79. |
59 | CANO-LOZANO J C , BOLA OS-JIM NEZ R , GUTI RREZ-MONTES C , et al . On the bubble formation under mixed injection conditions from a vertical needle[J]. International Journal of Multiphase Flow, 2017, 97: 23-32. |
60 | ZAWALA J , MALYSA K . Influence of the impact velocity and size of the film formed on bubble coalescence time at water surface[J]. Langmuir, 2011, 27(6): 2250-2257. |
61 | CAI Z Q , GAO Z M , BAO Y Y , et al . Formation and motion of conjunct bubbles in glycerol-water solutions[J]. Industrial & Engineering Chemistry Research, 2011, 51(4): 1990-1996. |
62 | WU M , GHARIB M . Experimental studies on the shape and path of small air bubbles rising in clean water[J]. Physics of Fluids, 2002, 14(7): 49-52. |
63 | YOSHIDA S , MANASSEH R . Trajectories of rising bubbles[C]//The 16th Japanese Multiphase Flow Symposium, 1997 |
64 | CLIFT R , GRACE J R , WEBER M E . Bubbles, drops, and particles[M]. New York: Academic Press, 1978. |
65 | KATZ J , MENEVEAU C . Wake-induced relative motion of bubbles rising in line[J]. International Journal of Multiphase Flow, 1996, 22: 239-258. |
66 | KAMP A M , CHESTER A K , COLIN C , et al . Bubble coalescence in turbulent flows: a mechanistic model for turbulence-induced coalescence applied to microgravity bubbly pipe flow[J]. International Journal of Multiphase Flow, 2001, 27: 1363-1396. |
67 | SANADA T , WATANABE M , FUKANO T . Effects of viscosity on coalescence of a bubble upon impact with a free surface[J]. Chemical Engineering Science, 2005, 60(19): 5372-5384. |
68 | LIAO Y , LUCAS D . A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[J]. Chemical Engineering Science, 2009, 64(15): 3389-3406. |
69 | 冯俊杰 . 气液两相体系气泡的流体力学行为研究[D]. 北京: 北京化工大学, 2016. |
FENG Junjie . Study of hydrodynamics behaviors of bubbles in gas-liquid systems[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
70 | TSE K L, MARTIN T , MCFARLANE C M , et al . Small bubble formation via a coalescence dependent break-up mechanism[J]. Chemical Engineering Science, 2003, 58: 275-286. |
71 | KISTER H Z . Distillation design[M]. New York: McGraw-Hill, 1992. |
72 | GUAN X P , YANG N . Bubble properties measurement in bubble columns: from homogeneous to heterogeneous regime[J]. Chemical Engineering Research and Design, 2017, 127: 103-112. |
73 | WILKINSON P M , HARINGA H , DIERENDONCK L L VAN . Mass transfer and bubble size in a bubble column under pressure[J]. Chemical Engineering Science, 1994, 49(9): 1417-1427. |
74 | KOJIMA H , SAWAI J , SUZUKI H . Effect of pressure on volumetric mass transfer coefficient and gas holdup in bubble column[J]. Chemical Engineering Science, 1997, 52: 4111-4116. |
75 | BAIRD M H I , RAMA RAO N V . Characteristics of a countercurrent reciprocating plate bubble column. II. Axial mixing and mass transfer[J]. The Canadian Journal of Chemical Engineering, 1988, 66: 222-231. |
76 | ZAREI T , ABEDINI E , RAHIMI R , et al . Computational fluid dynamics on the hydrodynamic characteristics of the conical cap tray[J]. Korean Journal of Chemical Engineering, 2017, 34(4): 969-976. |
77 | ZAREI A , HOSSEINI S H , RAHIMI R . CFD and experimental studies of liquid weeping in the circular sieve tray columns[J]. Chemical Engineering Research and Design, 2013, 91(12): 2333-2345. |
78 | WANG W W , LI S Y , LI J L . Experimental determination of bubble size distributions in laboratory scale sieve tray with mesh[J]. Industrial & Engineering Chemistry Research, 2012, 51(20): 7067-7072. |
79 | WHITMAN W G . The two film theory of gas absorption[J]. International Journal of Heat & Mass Transfer, 1924, 5(5): 429-433. |
80 | HIGBIE R . The rate of absorption of a pure gas into a still liquid during short periods of exposure[J]. Transactions of AIChE Journal, 1935, 31(1): 365-388. |
81 | DANCKWERTS P V . B1–Significance of liquid-film coefficients in gas absorption[J]. Industrial & Engineering Chemistry, 1951, 43(6): 1460-1467. |
82 | 余国琮, 袁希钢 . 化工计算传质学导论[M]. 天津: 天津大学出版社, 2011. |
YU Guocong , YUAN Xigang . Introduction of chemical engineering computational mass transfer[M]. Tianjin: Tianjin University Press, 2011. | |
83 | OZTURK S S , SCHUMPE A , DECKWER W D . Organic liquids in a bubble column: holdups and mass transfer coefficients[J]. AIChE Journal, 1987, 33(9): 1473-1480. |
84 | KAWASE Y , HALARD B , MOO-YOUNG M . Theoretical prediction of volumetric mass transfer coefficients in bubble columns for Newtonian and non-Newtonian fluids[J]. Chemical Engineering Science, 1987, 42(7): 1609-1617. |
85 | ZHAO B , WANG J F , YANG W G , et al . Gas-liquid mass transfer in slurry bubble systems[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 23-27. |
86 | AOKI J , HORI Y , HAYASHI K , et al . Mass transfer from single carbon dioxide bubbles in alcohol aqueous solutions in vertical pipes[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1991-2001. |
87 | 马友光, 汪晓红, 余国琮, 等 . 单个运动气泡近界面浓度场的研究[J]. 化工学报, 1998, 49(6): 715-720. |
Youguang MA , WANG Xiaohong , YU Guocong , et al . Study of the near-interface concentration field of individual motive bubbles[J]. Journal of Chemical Industry and Engineering, 1998, 49(6): 715-720. | |
88 | ZARITZKY N E , CALVELO A . Internal mass transfer coefficient within single bubbles. Theory and experiment[J]. The Canadian Journal of Chemical Engineering, 1979, 57: 58-64. |
89 | GARNER F H , HAMMERTON D . Circulation inside gas bubbles[J]. Chemical Engineering Science, 1954, 3: 1-11. |
90 | FILLA M , DAVIDSON J F , BATES J F , et al . Gas phase controlled mass transfer from a bubble[J]. Chemical Engineering Science, 1976, 31: 359-367. |
91 | SABONI A , ALEXANDROVA S , KARSHEVA M , et al . Mass transfer into a spherical bubble[J]. Chemical Engineering Science, 2016, 152: 109-115. |
[1] | 王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
[2] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[3] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[4] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[5] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[6] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[7] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[8] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[9] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[10] | 张帆, 陶少辉, 陈玉石, 项曙光. 基于改进恒热传输模型的精馏模拟初始化[J]. 化工进展, 2023, 42(9): 4550-4558. |
[11] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[12] | 张智琛, 朱云峰, 成卫戍, 马守涛, 姜杰, 孙冰, 周子辰, 徐伟. 高压聚乙烯失控分解研究进展:反应机理、引发体系与模型[J]. 化工进展, 2023, 42(8): 3979-3989. |
[13] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[14] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[15] | 陈蔚阳, 宋欣, 殷亚然, 张先明, 朱春英, 付涛涛, 马友光. 矩形微通道内液相黏度对气泡界面的作用机制[J]. 化工进展, 2023, 42(7): 3468-3477. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |