化工进展 ›› 2019, Vol. 38 ›› Issue (01): 434-448.DOI: 10.16085/j.issn.1000-6613.2018-1105
收稿日期:
2018-05-26
修回日期:
2018-07-10
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
邱学青
作者简介:
王欢(1988—),男,博士研究生,研究方向为木质素基纳米功能材料制备及应用。E-mail:<email>wangh702@126.com</email>。|邱学青,教授,博士生导师,研究方向为木质素资源化利用。E-mail:<email>cexqqiu@scut.edu.cn</email>; <email>xueqingqiu66@163.com</email>。
基金资助:
Huan WANG(),Dongjie YANG,Yong QIAN,Xueqing QIU()
Received:
2018-05-26
Revised:
2018-07-10
Online:
2019-01-05
Published:
2019-01-05
Contact:
Xueqing QIU
摘要:
木质素是植物中含量第二大的天然有机高分子聚合物,以来源于制浆造纸和生物质炼制中的工业木质素为原料,制备具有特殊功能的高附加值材料,对木质素进行资源化高效利用、解决化石资源日趋紧缺及环境污染等问题具有重要意义。近年来,研究人员利用各种技术制备了许多种类的木质素基功能材料,如载药微胶囊、防紫外剂、抗老化剂、光催化剂载体、炭电极材料等。本文介绍了木质素基功能材料的国内外最新研究进展,总结了木质素基功能材料的不同制备工艺和应用领域,评述了木质素微观结构及制备工艺对材料结构特性和应用性能的影响。指出木质素基功能材料的研究是涉及多个学科交叉的前沿课题,但如何高效制备结构规整可控且性能优异的木质素基功能材料仍然是一个具有挑战性的课题。今后的研究应加强对木质素微观结构及其调控机理的研究,以便可以更好地利用其自身的三维网状结构和大量芳香结构等特性制备基于木质素特性的功能材料。
中图分类号:
王欢, 杨东杰, 钱勇, 邱学青. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(01): 434-448.
Huan WANG, Dongjie YANG, Yong QIAN, Xueqing QIU. Recent progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 434-448.
碳前体 | 炭化条件 | BET比表面积 /m2·g-1 | 总孔体积 /cm 3 ·g-1 | 微孔体积 /cm 3 ·g-1 | 介孔体积 /cm 3 ·g-1 | 参考文献 |
---|---|---|---|---|---|---|
硫酸盐木质素 | 350℃,2h,800℃,CO2,2h | 1200 | 1.01 | 0.37 | 0.49 | [ |
酸盐木质素 | CO2,800℃,2h | 463 | 0.211 | [ | ||
水解木质素 | 600℃,2 h,800℃ | 865 | 0.82 | 0.36 | 0.46 | [ |
硫酸盐木质素 | CO2,850℃,20h | 1853 | 0.57 | [ | ||
碱木质素 | KOH,950℃,45min | 1946 | 0.96 | 0.70 | 0.13 | [ |
玉米秸秆木质素 | K2CO3,800℃,1h | 1410 | 0.49 | [ | ||
硫酸盐木质素 | H3PO4,472℃,2h | 1459 | 1.34 | 0.81 | 0.53 | [ |
表1 活化法制备的木质素炭及其结构特征
碳前体 | 炭化条件 | BET比表面积 /m2·g-1 | 总孔体积 /cm 3 ·g-1 | 微孔体积 /cm 3 ·g-1 | 介孔体积 /cm 3 ·g-1 | 参考文献 |
---|---|---|---|---|---|---|
硫酸盐木质素 | 350℃,2h,800℃,CO2,2h | 1200 | 1.01 | 0.37 | 0.49 | [ |
酸盐木质素 | CO2,800℃,2h | 463 | 0.211 | [ | ||
水解木质素 | 600℃,2 h,800℃ | 865 | 0.82 | 0.36 | 0.46 | [ |
硫酸盐木质素 | CO2,850℃,20h | 1853 | 0.57 | [ | ||
碱木质素 | KOH,950℃,45min | 1946 | 0.96 | 0.70 | 0.13 | [ |
玉米秸秆木质素 | K2CO3,800℃,1h | 1410 | 0.49 | [ | ||
硫酸盐木质素 | H3PO4,472℃,2h | 1459 | 1.34 | 0.81 | 0.53 | [ |
1 | CHO N S . On the characteristic of hardwood compound middle lamella lignin[J]. Mokuzai Gakkaishi, 1980, 26: 527-573. |
2 | KAI D , TAN M J , CHEE P L , et al . Towards lignin-based functional materials in a sustainable world[J]. Green Chemistry, 2016, 18(5): 1175-1200. |
3 | WANG C , KELLEY S S , VENDITTI R A . Lignin-based thermoplastic materials[J]. ChemSusChem, 2016, 9(8): 770-783. |
4 | RINALDI R , JASTRZEBSKI R , CLOUGH M T , et al . Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis[J]. Angewandte Chemie International Edition, 2016, 55(29): 8164-8215. |
5 | BRUIJNINCX P C A , RINALDI R , WECKHUYSEN B M . Unlocking the potential of a sleeping giant: lignins as sustainable raw materials for renewable fuels, chemicals and materials[J]. Green Chemistry, 2015, 17(11): 4860-4861. |
6 | LIU W J , JIANG H , YU H Q . Thermochemical conversion of lignin to functional materials: a review and future directions[J]. Green Chemistry, 2015, 17(11): 4888-4907. |
7 | 李浩, 邓永红, 邱学青 . 乙酰化处理对碱木质素在四氢呋喃中微结构的影响[J]. 物理化学学报, 2015, 31(1): 128-136. |
LI H , DENG Y H , QIU X Q . Influence of acetylation on the microstructure of alkali lignin in tetrahydrofuran[J]. Acta Phys.-Chim. Sin., 2015, 31(1): 128-136. | |
8 | 邱学青, 李浩, 邓永红, 等 . 碱木质素的乙酰化及其球形胶束的制备[J]. 高分子学报, 2014(11): 1458-1464. |
QIU X Q , LI H , DENG Y H , et al . The acetylation of alkali lignin and its use for spherical micelles preparation[J]. Acta Polymerica Sinica, 2014(11): 1458-1464. | |
9 | ABDEL ZAHER K S. , SWELLEM R H , AM NAWWAR G , et al . Proper use of rice straw black liquor: lignin/silica derivatives as efficient green antioxidants for SBR rubber[J]. Pigment & Resin Technology, 2014, 43(3): 159-174. |
10 | JESIONOWSKI T , Ł KLAPISZEWSKI , MILCZAREK G . Structural and electrochemical properties of multifunctional silica/lignin materials[J]. Materials Chemistry and Physics, 2014, 147(3): 1049-1057. |
11 | WANG X , WU F , DUAN Y , et al . Lignin-assisted solid-phase synthesis of nano-CuO for a photocatalyst with excellent catalytic activity and high performance supercapacitor electrodes[J]. RSC Advances, 2016, 6(70): 65644-65653. |
12 | KIM S K , KIM Y K , LEE H , et al . Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials[J]. ChemSusChem, 2014, 7(4): 1094-1101. |
13 | SAHA D , LI Y , BI Z , et al . Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon[J]. Langmuir, 2014, 30(3): 900-910. |
14 | JEON J W , ZHANG L , LUTKENHAUS J L , et al . Controlling porosity in lignin‐derived nanoporous carbon for supercapacitor applications[J]. ChemSusChem, 2015, 8(3): 428-432. |
15 | PANG Y , LI X , WANG S , et al . Lignin-polyurea microcapsules with anti-photolysis and sustained-release performances synthesized via pickering emulsion template[J]. Reactive and Functional Polymers, 2018, 123: 115-121. |
16 | KAI D , CHUA Y K , JIANG L , et al . Dual functional anti-oxidant and SPF enhancing lignin-based copolymers as additives for personal and healthcare products[J]. RSC Advances, 2016, 6(89): 86420-86427. |
17 | WANG H , LIN W S , QIU X Q , et al . In situ synthesis of flowerlike Lignin/ZnO composite with excellent UV-absorption properties and its application in polyurethane[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3696-3705. |
18 | WANG H , QIU X Q , ZHONG R S , et al . One-pot in-situ preparation of a lignin-based carbon/ nanocomposite with excellent photocatalytic performance[J]. Materials Chemistry and Physics, 2017, 199: 193-202. |
19 | ZHANG W , YIN J , LIN Z , et al . Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance[J]. Electrochimica Acta, 2015, 176: 1136-1142. ZnO |
20 | WANG Z , WANG X , FU Y , et al . Colloidal behaviors of lignin contaminants: Destabilization and elimination for oligosaccharides separation from wood hydrolysate[J]. Separation and Purification Technology, 2015, 145: 1-7. |
21 | ASO T , KODA K , KUBO S , et al . Preparation of novel lignin-based cement dispersants from isolated lignins[J]. Journal of Wood Chemistry and Technology, 2013, 33(4): 286-298. |
22 | QIAN Y , DENG Y H , QIU X Q , et al . Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor[J]. Green Chemistry, 2014, 16(4): 2156-2163. |
23 | QIAN Y , DENG Y , LI H , et al . Reaction-free lignin whitening via a self-assembly of acetylated lignin[J]. Industrial & Engineering Chemistry Research, 2014, 53(24): 10024-10028. |
24 | 邓永红, 刘友法, 张伟健, 等 . 木质素基偶氮聚合物胶体球的制备[J]. 物理化学学报, 2015, 31(3): 505-511. |
DENG Y H , LIU Y F , ZHANG W J , et al . Formation of colloidal spheres from a lignin-based azo polymer[J]. Acta Phys.-Chim. Sin., 2015, 31(3): 505-511. | |
25 | YEARLA S R , PADMASREE K . Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants[J]. Journal of Experimental Nanoscience, 2016, 11(4): 289-302. |
26 | XIONG F , HAN Y , WANG S , et al . Preparation and formation mechanism of size-controlled lignin nanospheres by self-assembly[J]. Industrial Crops and Products, 2017, 100: 146-152. |
27 | HONG N , LI Y , ZENG W , et al . Ultrahigh molecular weight, lignosulfonate-based polymers: preparation, self-assembly behaviours and dispersion property in coal–water slurry[J]. RSC Advances, 2015, 5(28): 21588-21595. |
28 | QIAN Y , QIU X Q , ZHONG X W , et al . Lignin reverse micelles for UV-absorbing and high mechanical performance thermoplastics[J]. Industrial & Engineering Chemistry Research, 2015, 54(48): 12025-12030. |
29 | ZHONG X , QIAN Y , HUANG J , et al . Fabrication of lignosulfonate vesicular reverse micelles to immobilize horseradish peroxidase[J]. Industrial & Engineering Chemistry Research, 2016, 55: 2731-2737. |
30 | 李浩 . 分子间相互作用对木质素两亲聚合物微结构的影响及纳米微球的制备[D]. 广州: 华南理工大学, 2015. |
LI H . The microstructures of lignin amphiphilic polymers influenced by molecular interaction and the preparation of lignin-based nanosphere[D]. Guangzhou: South China University of Technology, 2015. | |
31 | 李圆圆, 杨东杰, 邱学青 . pH响应木质素基胶体球的制备和表征[J]. 高等学校化学学报, 2017, 38(5): 880-887. |
LI Y Y , YANG D J , QIU X Q . Preparation and characterization of pH-responsive lignin-based colloidal spheres[J]. Chemical Journal of Chinese Universities, 2017, 38(5): 880-887. | |
32 | Ł KLAPISZEWSKI , BARTCZAK P , WYSOKOWSKI M , et al . Silica conjugated with kraft lignin and its use as a novel ‘green’sorbent for hazardous metal ions removal[J]. Chemical Engineering Journal, 2015, 260: 684-693. |
33 | ZHANG R , XIAO X , TAI Q , et al . Preparation of lignin–silica hybrids and its application in intumescent flame-retardant poly (lactic acid) system[J]. High Performance Polymers, 2012, 24(8): 738-746. |
34 | JESIONOWSKI T , Ł KLAPISZEWSKI , MILCZAREK G . Kraft lignin and silica as precursors of advanced composite materials and electroactive blends[J]. Journal of Materials Science, 2014, 49(3): 1376-1385. |
35 | Ł KLAPISZEWSKI , MADRAWSKA M , JESIONOWSKI T . Preparation and characterisation of hydrated silica lignin biocomposites[J]. Physicochem. Probl. Miner. Process, 2012, 48(2): 463-473. |
36 | XIONG W L , QIU X Q , YANG D J , et al . A simple one-pot method to prepare UV-absorbent lignin/silica hybrids based on alkali lignin from pulping black liquor and sodium metasilicate[J]. Chemical Engineering Journal, 2017, 326: 803-810. / |
37 | XIONG W L , YANG D J , ZHONG R S , et al . Preparation of lignin-based silica composite submicron particles from alkali lignin and sodium silicate in aqueous solution using a direct precipitation method[J]. Industrial Crops and Products, 2015, 74: 285-292. |
38 | WANG H , YI G , ZU X , et al . Photoelectric characteristics of the p-n junction between ZnO nanorods and polyaniline nanowires and their application as a UV photodetector[J]. Materials Letters, 2016, 162: 83-86. |
39 | BHIRUD A , SATHAYE S , WAICHAL R , et al . In situ preparation of N-ZnO /graphene nanocomposites: excellent candidate as a photocatalyst for enhanced solar hydrogen generation and high performance supercapacitor electrode[J]. Journal of Materials Chemistry A, 2015, 3(33): 17050-17063. |
40 | WANG H , QIU X Q , LIU W F , et al . A novel lignin/ZnO hybrid nanocomposite with excellent UV: absorption ability and its application in transparent polyurethane coating[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 11133-11141. |
41 | ZU X , WANG H , YI G , et al . Self-powered UV photodetector based on heterostructured TiO2 nanowire arrays and polyaniline nanoflower arrays[J]. Synthetic Metals, 2015, 200: 58-65. |
42 | WANG H , QIN P , YI G , et al . A high-sensitive ultraviolet photodetector composed of double-layered TiO2 nanostructure and Au nanoparticles film based on Schottky junction[J]. Materials Chemistry and Physics, 2017, 194: 42-48. |
43 | MORSELLA M , GIAMMATTEO M , ARRIZZA L , et al . Lignin coating to quench photocatalytic activity of titanium dioxide nanoparticles for potential skin care applications [J]. RSC Advances, 2015, 5 (71): 57453-57461. |
44 | MORSELLA M , D’ALESSANDRO N , LANTERNA A E , et al . Improving the sunscreen properties of TiO2 through an understanding of its catalytic properties [J]. ACS Omega, 2016, 1(3): 464-469. |
45 | NAIR V , DHAR P , VINU R . Production of phenolics via photocatalysis of ball milled lignin–TiO2 mixtures in aqueous suspension[J]. RSC Advances, 2016, 6(22): 18204-18216. |
46 | YANG D , WANG S , ZHONG R , et al . Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings[J]. Frontiers of Chemical Science and Engineering, . |
47 | ZHANG L , YOU T , ZHOU T , et al . Interconnected hierarchical porous carbon from lignin-derived byproducts of bioethanol production for ultra-high performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 13918-13925. |
48 | COTORUELO L M , MARQU S M D , RODR GUEZ-MIRASOL J , et al . Lignin-based activated carbons for adsorption of sodium dodecylbenzene sulfonate: equilibrium and kinetic studies[J]. Journal of Colloid and Interface Science, 2009, 332(1): 39-45. |
49 | RODR GUEZ-MIRASOL J , CORDERO T , RODR GUEZ J J . Preparation and characterization of activated carbons from eucalyptus kraft lignin [J]. Carbon, 1993, 31(1): 87-95. |
50 | BAKLANOVA O N , PLAKSIN G V , DROZDOV V A , et al . Preparation of microporous sorbents from cedar nutshells and hydrolytic lignin [J]. Carbon, 2003, 41(9): 1793-800. |
51 | RODRÍGUEZ-MIRASOL J , CORDERO T , RODRIGUEZ J J . Activated carbons from carbon dioxide partial gasification of eucalyptus kraft lignin[J]. Energy & Fuels, 1993, 7(1): 133-138. |
52 | BABEŁ K , JUREWICZ K . KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption[J]. Carbon, 2008, 46(14): 1948-1956. |
53 | SUN Y , WEI J , WANG Y S , et al . Production of activated carbon by K2CO3 activation treatment of cornstalk lignin and its performance in removing phenol and subsequent bioregeneration[J]. Environmental Technology, 2010, 31(1): 53-61. |
54 | ZHANG W , LIN H , LIN Z , et al . 3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method[J]. ChemSusChem, 2015, 8(12): 2114-2122. |
55 | GUO N , LI M , SUN X , et al . Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities[J]. Green Chemistry, 2017, 19(11): 2595-2602. |
56 | GONZALEZ-SERRANO E , CORDERO T , RODRIGUEZ-MIRASOL J , et al . Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors[J]. Water Research, 2004, 38(13): 3043-3050. |
57 | CHEN F , ZHOU W J , YAO H F , et al . Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications[J]. Green Chemistry, 2013, 15(11): 3057-3063. |
58 | WANG H , QIU X Q , LIU W F , et al . Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity[J]. Applied Surface Science, 2017, 426: 206-216. |
59 | WANG N , FAN H , AI S . Lignin templated synthesis of porous carbon-CeO2 composites and their application for the photocatalytic desulphuration[J]. Chemical Engineering Journal, 2015, 260: 785-790. |
60 | CHEN X Y , D-H KUO , LU D F , et al . Synthesis and photocatalytic activity of mesoporous TiO2 nanoparticle using biological renewable resource of un-modified lignin as a template[J]. Microporous and Mesoporous Materials, 2016, 223: 145-151. |
61 | STRONG L , BROWN T A . Avermectins in insect control and biology: a review[J]. Bulletin of Entomological Research, 1987, 77(3): 357-389. |
62 | CLARK J M , SCOTT J G , CAMPOS F , et al . Resistance to avermectins: extent, mechanisms, and management implications[J]. Annual Review of Entomology, 1995, 40(1): 1-30. |
63 | 周明松, 刘庆芳, 王素雅, 等 . 静电自组装法制备阿维菌素微胶囊[J]. 精细化工, 2017, 34(5): 519-524. |
ZHOU M S , LIU Q F , WANG S Y , et al . Preparation of avermectin microcapsules by electrostatic self-assembly method[J]. Fine Chemicals, 2017, 34(5): 519-524. | |
64 | LI Y X , ZHOU M S , PANG Y X , et al . Lignin-based microsphere: Preparation and performance on encapsulating the pesticide avermectin[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3321-3328. |
65 | DENG Y H , ZHAO H J , QIAN Y Q , et al . Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance[J]. Industrial Crops and Products, 2016, 87: 191-197. |
66 | PANG Y X , WANG S W , QIU X Q , et al . Preparation of lignin/sodium dodecyl sulfate composite nanoparticles and their application in pickering emulsion template-based microencapsulation[J]. Journal of Agricultural and Food Chemistry, 2017, 65(50): 11011-11019. |
67 | LI Y Y , QIU X Q , QIAN Y , et al . pH-responsive lignin-based complex micelles: preparation, characterization and application in oral drug delivery[J]. Chemical Engineering Journal, 2017, 327: 1176-1183. |
68 | QIAN Y , QIU X Q , ZHU S P . Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens[J]. Green Chemistry, 2015, 17(1): 320-324. |
69 | QIAN Y , ZHONG X W , LI Y , et al . Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor[J]. Industrial Crops and Products, 2017, 101: 54-60. |
70 | 陈福泉, 赵永青, 冯彦洪, 等 . 木质素/热塑性塑料复合材料界面增容的研究进展[J]. 化工学报, 2014, 65(3): 777-784. |
CHEN F Q , ZHAO Y Q , FENG Y H , et al . Progress of interfacial compatibilization methods of lignin/thermoplast composites[J]. CIESC Journal, 2014, 65(3): 777-784. | |
71 | ZONG E M , LIU X H , LIU L N , et al . Graft polymerization of acrylic monomers onto lignin with CaCl2-H2O2 as initiator: preparation, mechanism, characterization, and application in poly (lactic acid)[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 337-348. |
72 | LIU B , KHARE A , AYDIL E S . TiO2-B/anatase core-shell heterojunction nanowires for photocatalysis[J]. ACS Applied Materials & Interfaces, 2011, 3(11): 4444-4450. |
73 | SU Y , YANG Y , ZHANG H , et al . Enhanced photodegradation of methyl orange with TiO2 nanoparticles using a triboelectric nanogenerator[J]. Nanotechnology, 2013, 24(29): 295401. |
74 | HAN C , CHEN Z , ZHANG N , et al . Hierarchically CdS Decorated 1D ZnO nanorods-2D graphene hybrids: low temperature synthesis and enhanced photocatalytic performance[J]. Advanced Functional Materials, 2015, 25(2): 221-229. |
75 | MEN X J , CHEN H B , CHANG K W , et al . Three-dimensional free-standing ZnO/graphene composite foam for photocurrent generation and photocatalytic activity[J]. Applied Catalysis B: Environmental, 2016, 187: 367-374. |
76 | GAO N L , LU Z Y , ZHAO X X , et al . Enhanced photocatalytic activity of a double conductive C/Fe3O4/Bi2O3 composite photocatalyst based on biomass[J]. Chemical Engineering Journal, 2016, 304: 351-361. |
77 | CHEN X L , PAUL R , DAI L M . Carbon-based supercapacitors for efficient energy storage[J]. National Science Review, 2017, 4(3): 453-489. |
78 | HE Y M , CHEN W J , GAO C T , et al . An overview of carbon materials for flexible electrochemical capacitors[J]. Nanoscale, 2013, 5(19): 8799-8820. |
79 | LAI C L , ZHOU Z P , ZHANG L F , et al . Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors[J]. Journal of Power Sources, 2014, 247: 134-141. |
80 | YANG J , ZHOU X Y , LI J , et al . Study of nano-porous hard carbons as anode materials for lithium ion batteries[J]. Materials Chemistry and Physics, 2012, 135(2/3): 445-450. |
81 | HU B , WANG K , WU L H , et al . Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Advanced Materials, 2010, 22(7): 813-828. |
82 | DE LAS CASAS C , LI W . A review of application of carbon nanotubes for lithium ion battery anode material[J]. Journal of Power Sources, 2012, 208: 74-85. |
83 | CHOI D I , LEE J N , SONG J , et al . Fabrication of polyacrylonitrile/lignin-based carbon nanofibers for high-power lithium ion battery anodes[J]. Journal of Solid State Electrochemistry, 2013, 17(9): 2471-2475. |
84 | WANG S X , YANG L , STUBBS L P , et al . Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12275-12282. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[4] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[5] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[6] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[7] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[8] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[9] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[10] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[11] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[12] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[13] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[14] | 陈森, 殷鹏远, 杨证禄, 莫一鸣, 崔希利, 锁显, 邢华斌. 功能固体材料智能合成研究进展[J]. 化工进展, 2023, 42(7): 3340-3348. |
[15] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |