1 |
ATENCIA J , BEEBE D . Controlled microfluidic interfaces[J]. Nature, 2005(7059): 648-655.
|
2 |
WHITESIDES G M . The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373.
|
3 |
ABATE A R , WEITZ D A . High‐order multiple emulsions formed in poly(dimethylsiloxane) microfluidics [J]. Small, 2009, 5(18): 2030-2032.
|
4 |
WANG W , XIE R , JU X J , et al . Controllable microfluidic production of multicomponent multiple emulsions [J]. Lab on a Chip, 2011, 11(9): 1587-1592.
|
5 |
XU S , NIE Z , SEO M , et al . Generation of monodisperse particles by using microfluidics: control over size, shape, and composition[J]. Angewandte Chemie International Edition, 2005, 44(25): 734-738.
|
6 |
WU F , WANG W , LIU L , et al . Monodisperse hybrid microcapsules with ultrathin shell of submicron thickness for rapid enzyme reaction[J]. Journal of Materials Chemistry B, 2015, 3(5): 796-803.
|
7 |
XU Q , HASHIMOTO M , DANG T T , et al . Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery[J]. Small, 2009, 5(13): 1575-1581.
|
8 |
CHOI C H , JUNG J H , KIM D W , et al . Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system[J]. Lab on a Chip, 2008, 8(9): 1544-1551.
|
9 |
WANG W , ZHANG M J , CHU L Y . Functional polymeric microparticles engineered from controllable microfluidic emulsions[J]. Accounts of Chemical Research, 2014, 47(2): 373-384.
|
10 |
LIU Z , LIU L , JU X J , et al . K+-recognition capsules with squirting release mechanisms[J]. Chemical Communications, 2011, 47(45): 12283-12285.
|
11 |
LIU L , YANG J , JU X J , et al . Monodisperse core-shell chitosan microcapsules for pH-responsive burst release of hydrophobic drugs[J]. Soft Matter., 2011, 7(10): 4821-4827.
|
12 |
WANG W , LIU L , DR X J J , et al . A novel thermo-induced self-bursting microcapsule with magnetic-targeting property[J]. ChemPhysChem, 2009, 10(14): 2405-2409.
|
13 |
LIU L , WANG W , JU X J , et al . Smart thermo-triggered squirting capsules for nanoparticle delivery[J]. Soft Matter., 2010, 6(16): 3759-3763.
|
14 |
MOU C L , HE X H , JU X J , et al . Change in size and structure of monodisperse poly(N-isopropylacrylamide) microcapsules in response to varying temperature and ethyl gallate concentration[J]. Chemical Engineering Journal, 2012, 210(6): 212-219.
|
15 |
HE F , WANG W , HE X H , et al . Controllable multicompartmental capsules with distinct cores and shells for synergistic release [J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8743-8754.
|
16 |
WANG W , LUO T , JU X J , et al . Microfluidic preparation of multicompartment microcapsules for isolated co-encapsulation and controlled release of diverse components[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13(5): 325-332.
|
17 |
SUN B J , SHUM H C , HOLTZE C , et al . Microfluidic melt emulsification for encapsulation and release of actives[J]. ACS Applied Materials & Interfaces, 2010, 2(12): 3411-3416.
|
18 |
ZHANG M J , WANG W , YANG X L , et al . Uniform microparticles with controllable highly interconnected hierarchical porous structures[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 13758-13767.
|
19 |
LEE D , WEITZ D A . Nonspherical colloidosomes with multiple compartments from double emulsions[J]. Small, 2009, 5(17): 1932-1935.
|
20 |
NIE Z , XU S , SEO M , et al . Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors[J]. Journal of the American Chemical Society, 2005, 127(22): 8058-8063.
|
21 |
WU F , JU X J , HE X H , et al . A novel synthetic microfiber with controllable size for cell encapsulation and culture[J]. Journal of Materials Chemistry B, 2016, 4(14): 2455-2465.
|
22 |
LIN S , WANG W , JU X J , et al . Ultrasensitive microchip based on smart microgel for real-time online detection of trace threat analytes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(8): 2023-2028.
|
23 |
SUN Y M , WANG W , WEI Y Y , et al . In situ fabrication of temperature- and ethanol-responsive smart membrane in microchip[J]. Lab on a Chip, 2014, 14(14): 2418-2427.
|
24 |
LIN S , WANG W , JU X J , et al . A simple strategy for in situ fabrication of a smart hydrogel microvalve within microchannels for thermostatic control[J]. Lab on a Chip, 2014, 14(15): 2626-2634.
|
25 |
MENG Z J , WANG W , LIANG X , et al . Plug-n-play microfluidic systems from flexible assembly of glass-based flow-control modules[J]. Lab on a Chip, 2015, 15(8): 1869-1878.
|
26 |
ZHANG M J , WANG W , XIE R , et al . Microfluidic fabrication of monodisperse microcapsules for glucose-response at physiological temperature[J]. Soft Matter, 2013, 9(16): 4150-4159.
|
27 |
WEI J , JU X J , ZOU X Y , et al . Multi-stimuli-responsive microcapsules for adjustable controlled-release[J]. Advanced Functional Materials, 2014, 24(22): 3312-3323.
|
28 |
MOU C L , WANG W , LI Z L , et al . Trojan-horse-like stimuli-responsive microcapsules[J]. Advanced Science, 2018. DOI:10.1002/advs. 1700960.
DOI
URL
|
29 |
DENG N N , YELLESWARAPU M , HUCK W T S . Monodisperse uni- and multicompartment liposomes[J]. Journal of the American Chemical Society, 2016, 138(24): 7584-7591.
|
30 |
DENG N N , YELLESWARAPU M , ZEHNG L , et al . Microfluidic assembly of monodisperse vesosomes as artificial cell models[J]. Journal of the American Chemical Society, 2017, 139(2): 587-590.
|
31 |
DENG N N , HUCK W T S . Microfluidic formation of monodisperse coacervate organelles in liposomes [J]. Angewandte Chemie International Edition, 2017, 56(33): 9736-9740.
|
32 |
DENG N N , VIBHUTE M A , ZEHNG L , et al . Microfluidic assembly of monodisperse vesosomes as artificial cell models[J]. Journal of the American Chemical Society, 2018, 140(24): 7399-7382.
|
33 |
WANG W , ZHANG M J , XIE R , et al . Hole-shell microparticles from controllably evolved double emulsions [J]. Angewandte Chemie International Edition, 2013, 52(31): 8084-8087.
|
34 |
HE X H , WANG W , DENG K , et al . Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapod-like structures[J]. RSC Advances, 2014, 5(2): 928-936.
|
35 |
MENG Z J , WANG W , XIE R , et al . Microfluidic generation of hollow Ca-alginate microfibers[J]. Lab on a Chip, 2016, 16(14): 2673-2681.
|
36 |
HE X H , WANG W , LIU Y M , et al . Microfluidic fabrication of bio-inspired microfibers with controllable magnetic spindle-knots for 3D assembly and water collection[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17471-17481.
|