化工进展 ›› 2019, Vol. 38 ›› Issue (01): 404-420.DOI: 10.16085/j.issn.1000-6613.2018-1222
收稿日期:
2018-06-12
修回日期:
2018-08-31
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
陆安慧
作者简介:
张向倩(1987—),女,博士研究生,研究方向为多孔纳米炭设计合成及储能应用。E-mail:<email>xiangqianzhang@dlut.edu.cn</email>。|陆安慧,教授,博士生导师,研究方向为能源存储与催化转化应用研究。E-mail:<email>anhuilu@dlut.edu.cn</email>。
基金资助:
Xiangqian ZHANG(),Bin HE,Xiaoling DONG,Chengyu YE,Anhui LU()
Received:
2018-06-12
Revised:
2018-08-31
Online:
2019-01-05
Published:
2019-01-05
Contact:
Anhui LU
摘要:
多孔炭材料具有导电性好、结构稳定、资源丰富、价格低廉的天然优势,既可直接作为电极材料,构建炭基电化学储能器件,又可与非炭电活性材料复合,起到传输电子、缓冲体积膨胀及调节界面反应的作用,在电化学储能器件中一直发挥着不可或缺的作用。结合本文作者课题组的研究工作,本文总结了多孔炭制备及孔结构和形貌的调控方法,分析了各方法的优缺点;并以超级电容器、锂离子/钠离子电池和锂硫电池为代表,阐述了多孔炭材料在电化学储能领域的作用及应用研究现状,讨论了电化学储能器件对多孔炭材料的结构与性能要求,指出了多孔炭在电化学储能应用中存在的局限性,并对多孔炭在这些储能领域的研究和发展趋势做出展望。
中图分类号:
张向倩, 何斌, 董晓玲, 叶成玉, 陆安慧. 多孔炭材料设计合成及电化学储能应用[J]. 化工进展, 2019, 38(01): 404-420.
Xiangqian ZHANG, Bin HE, Xiaoling DONG, Chengyu YE, Anhui LU. Design and synthesis of porous carbon materials for energy storage[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 404-420.
1 | CANDELARIA S L , SHAO Y Y , ZHOU W , et al .Nanostructured carbon for energy storage and conversion[J]. Nano Energy, 2012, 1:195-220. |
2 | LU A H , HAO G P , SUN Q , et al .Chemical synthesis of carbon materials with intriguing nanostructure and morphology[J].Macromol. Chem. Phys., 2012, 213: 1107-1131. |
3 | DAWSON E A , PARKES G M B , Barnes P A , et al .An investigation of the porosity of carbons prepared by constant rate activation in air[J].Carbon, 2003, 41: 571-578. |
4 | WANG H L , GAO Q M , HU J . High hydrogen storage capacity of porous carbons prepared by using activated carbon[J].AmJ. Chem. Soc. , 2009, 131(20): 7016-7022. |
5 | WU X Y , SHI Z Q , TJANDRA R , et al . Nitrogen-enriched porous carbon nanorods templated by cellulose nanocrystals as high performance supercapacitor electrodes[J]. J.Mater Chem.A, 2015, 3: 23768-23777. |
6 | HE X J , LI X J , MA H, et al . ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. J. Power Sources, 2017, 340: 183-191. |
7 | SUN F , LIU X Y , WU H B , et al . In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5V full-carbon lithium-ion capacitor[J]. Nano Lett. , 2018, 18: 3368-3376. |
8 | TANG J , LIU J , LI C L , et al . Synthesis of nitrogen-doped mesoporous carbon spheres with extra large pores through assembly of diblock copolymer micelles[J]. Angew. Chem. Int. Ed. , 2015, 54: 588-593. |
9 | QIAN D , LEI C , WANG E M , et al . A method for creating microporous carbon materials with excellent CO2-adsorption capacity and selectivity[J]. Chem. Sus. Chem. , 2014, 7: 291-298. |
10 | SUN Q , LI W C , LU A H . Insight into structure-dependent self-activation mechanism in a confined nanospace of core-shell nanocomposites[J]. Small, 2013, 9: 2086-2090. |
11 | CAO X H , TAN C L , SINDOROB M , et al . Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion[J]. Chem. Soc. Rev. , 2017, 46: 2660-2677. |
12 | 王焕磊, 高秋明 . 多孔碳材料的模板法制备、活化处理及储能应用[J]. 高等学校化学学报, 2011, 32(3): 462-470. |
WANG H L , GAO Q M . Template synthesis, activation and energy storage application of porous carbon materials[J]. Chemical Journal of Chinese Universities, 2011, 32(3): 462-470. | |
13 | XIE X Y , HE X J , SHAO X L , et al . Synthesis of layered microporous carbons from coal tar by directing, space-confinement and self-sacrificed template strategy for supercapacitors[J]. Electrochimica Acta, 2017, 246: 634-642. |
14 | WANG J C , KASKEL S . KOH activation of carbon-based materials for energy storage[J]. J. Mater. Chem. , 2012, 22: 23710-23725. |
15 | SEVILLA M , MOKAYA R . Energy storage applications of activated carbons: supercapacitors and hydrogen storage[J]. Energy Environ. Sci. , 2014, 7: 1250-1280. |
16 | GONG Y N , LI D L , LUO C Z , et al . Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors[J]. Green Chem. , 2017, 19: 4132-4140. |
17 | 传秀云, 周述慧 . 模板法合成中孔炭材料[J]. 新型炭材料, 2011, 26(2): 151-160. |
CHUAN X Y , ZHOU S H . Preparation of mesoporous carbons by a template method[J]. New Carbon Materials, 2011, 26(2): 151-160. | |
18 | RYOO R , JOO S H , JUN S N . Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. The Journal of Physical Chemistry B, 1999, 103(37): 7743-7746. |
19 | NISHIHARA H , YANG Q H , HOU P X , et al . A possible buckybowl-like structure of zeolite templated carbon[J]. Carbon, 2009, 47: 1220-1230. |
20 | KIM K , LEE T , KWON Y , et al . Lanthanum-catalyse synthesis of microporous 3D graphene-like carbons in a zeolite template [J]. Nature, 2016, 535: 131-135. |
21 | LI W , LIU J , ZHAO D . Mesoporous materials for energy conversion and storage devices [J]. Nat. Rev. Mater. , 2016, 1: 16023. |
22 | LIANG C D , HONG K L , GEORGES A , et al . Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angewandte Chemie International Edition, 2004, 43: 5785-5789. |
23 | LIU J , YANG T Y , WANG D W , et al . A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres[J]. Nature Communications, 2013, 4: 2798. |
24 | ZHANG F Q , MENG Y , GU D , et al . An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology[J]. Chemistry of Materials, 2006, 18 (22): 5279-5288. |
25 | WEI J , SUN Z K , LUO W , et al . New insight into the synthesis of large-pore ordered mesoporous materials[J].AmJ. Chem. Soc., 2017, 139(5): 1706–1713. |
26 | TANG J , LIU J , LI C L , et al . Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles[J]. Angew. Chem. Int. Ed. , 2015, 54: 588-593. |
27 | ZHANG X Q , SUN Q , DONG W , et al . Synthesis of superior carbon nanofibers with large aspect ratio and tunable porosity for electrochemical energy storage[J]. J.Mater.Chem.A, 2013, 1: 9449-9455. |
28 | DONG X L , LU A H , HE B , et al . Highly microporous carbons derived from a complex of glutamic acid and zinc chloride for use in supercapacitors[J]. Journal of Power Sources, 2016, 327: 535-542. |
29 | TIEN B M , XU M W , LIU J F . Synthesis and electrochemical characterization of carbon spheres as anode material for lithium-ion battery[J]. Mater. Lett. , 2010, 64: 1465-1467. |
30 | LI W R , CHEN D H , LI Z , et al . Nitrogen-containing carbon spheres with very large uniform mesopores: the superior electrode materials for EDLC in organic electrolyte[J]. Carbon, 2007, 45: 1757-1763. |
31 | DONG Y R , NISHIYAMA N , EGASHIRA Y , et al . Basic amid acid-assisted synthesis of resorcinol-formaldehyde polymer and carbon nanospheres[J]. Ind. Eng. Chem. Res. , 2008, 47: 4712-4716. |
32 | WANG S , LI W C , HAO G P , et al . Temperature-programmed precise control over the sizes of carbon nanospheres based on benzoxazine chemistry[J]. J.Am.Chem.Soc. , 2011, 133: 15304-15307. |
33 | KIM T W , CHUNG P W , SLOWING I I , et al . Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells[J]. Nano Lett. , 2008, 8: 3724-3727. |
34 | HU B , WANG K , WU L H , et al . Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Adv. Mater. , 2010, 22: 813-828. |
35 | BACCILE N , LAURENT G , BABONNEAU F , et al . Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations[J].J.Phys.Chem.C, 2009, 113: 9644-9654. |
36 | TITIRICI M M , THOMAS A , ANTONIETTI M . Replication and coating of silica templates by hydrothermal carbonization[J]. Adv. Funct. Mater., 2007, 17: 1010-1018. |
37 | SHIN Y , WANG L Q , BAE I T , et al . Hydrothermal syntheses of colloidal carbon spheres from cyclodextrins[J].PhysJ. Chem. C, 2008, 112: 14236-14240. |
38 | YAO C , SHIN Y , WANG L Q , et al . Hydrothermal dehydration of aqueous fructose solutions in a closed system[J].PhysJ. Chem. C, 2007, 111: 15141--=115145. |
39 | CHANG-CHIEN C Y , HSU C H , LEE T Y , et al . Synthesis of carbon and silica hollow spheres with mesoporous shells using polyethylene oxide/phenol formaldehyde polymer blend[J]. Eur.J. Inorg Chem., 2007, 24: 3798-3804. |
40 | JOO J B , KIM P , KIM W , et al . Simple preparation of hollow carbon sphere via templating method[J]. Curr. Appl. Phys. , 2008, 8: 814-817. |
41 | IKEDA S , TACHI K , NG Y H , et al . Selective adsorption of glucose-derived carbon precursor on amino-functionalized porous silica for fabrication of hollow carbon spheres with porous walls[J]. Chem. Mater. , 2007, 19: 4335-4340. |
42 | WANG G H , SUN Q , ZHANG R , et al . Weak acid-base interaction induced assembly for the synthesis of diverse hollow nanospheres[J]. Chem. Mater., 2011, 23: 4537-4542. |
43 | SUN X M , LI Y D . Hollow carbonaceous capsules from glucose solution[J]. J. Colloid. Interface. Sci., 2005, 291: 7-12. |
44 | LI Y , CHEN J F , XU Q , et al . Controllable route to solid and hollow monodisperse carbon nanospheres[J].J.Phys.Chem. C, 2009, 113: 10085-10089. |
45 | HAN J , SONG G , GUO R . A facile solution route for polymeric hollow spheres with controllable size[J]. Adv. Mater., 2006, 18: 3140-3144. |
46 | SUN Z C , BAI F , WU H M , et al . Hydrogen-bonding-assisted self-assembly: monodisperse hollow nanoparticles made easy[J]. J. Am. Chem. Soc., 2009, 131: 13594-13595. |
47 | MCDONALD C J , BOUCK K J , CHAPUT A B , et al . Emulsion polymerization of voided particles by encapsulation of a nonsolvent[J]. Macromolecules, 2000, 33: 1593-1605. |
48 | WANG G H , SUN Q , ZHANG R , et al . Weak acid-base interaction induced assembly for the synthesis of diverse hollow nanospheres[J]. Chem. Mater., 2011, 23: 4537-4542. |
49 | XU F , TANG Z , HUANG S , et al . Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nat Commun, 2015, 6: 7221-7226. |
50 | SUN Q , WANG L M , WANG X , et al . Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance[J]. J. Am. Chem. Soc., 2015, 137: 1947-1955. |
51 | ZHANG L H , HE B , LI W C , et al . Surface free energy-induced assembly to the synthesis of grid-like multi-cavity carbon spheres with high level in-cavity encapsulation for lithium-sulfur cathode[J]. Adv. Energy Mater. , 2017, 7: 1701518. |
52 | FENG X L . Nanocarbons for advanced energy storage[M]. Germany: Wiley-VCH Verlag GmbH & Co. KgaA, 2015. |
53 | LIU X M , HUANG Z D , OH S W , et al . Carbon nanotube (CNT) -based composites as electrode material for rechargeable Li-ion batteries: a review[J]. Compos. Sci. Technol. , 2012, 72(2): 121-144. |
54 | 楠顶, 黄正宏, 康飞宇, 等 . 锂离子电池负极用纤维状炭材料[J]. 新型炭材料, 2015, 30 (1): 1-11. |
NAN D , HUANG Z H , KANG F Y , et al . Research progress on fibrous carbon materials as anode materials for lithium ion batteries[J]. New Carbon Materials, 2015, 30(1): 1-11. | |
55 | ZHOU Z P , LIU K M , LAI C L , et al . Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid[J]. Polymer, 2010, 51(11): 2360-2367. |
56 | THAVASI V , SINGH G , RAMAKRISHNA S . Electrospun nanofibers in energy and environmental applications[J]. Energy Environ. Sci., 2008, 1: 205-221. |
57 | QIAN H S , YU S H , LUO L B , et al . Synthesis of uniform Te@carbon-rich composite nanocables with photoluminescence properties and carbonaceous nanofibers by the hydrothermal carbonization of glucose[J]. Chem. Mater. , 2006, 18(8): 2102-2108. |
58 | ODRIGUEZ N M . A review of catalytically grown carbon nanofibers[J]. J. Mater. Res., 1993, 8(12): 3233-3250. |
59 | MITTAL J , BAHL O P , MATHUR R B . Single step carbonization and graphitization of highly stablized pan fibers[J]. Carbon, 1997, 35: 1196-1197. |
60 | KIM I C , YUN H G , LEE K H . Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process[J]. J. Membr. Sci., 2002, 199: 75-84. |
61 | ZHENG Z , GUO H , PEI F , et al . High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries[J]. Adv. Funct. Mater. , 2016, 26(48): 8952-8959. |
62 | BRYDSON R , WESTWOOD A V K , JIANG X , et al . Investigating the distribution and bonding of light elements alloyed in carbonaceous materials using EELS in the TEM/STEM[J]. Carbon, 1998, 36(7): 1139-1147. |
63 | ARENA U , MASTELLONE M L , CAMINO G , et al . An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins[J]. Polym. Degrad. Stabil. , 2006, 91(4): 763-768. |
64 | REN S H , PRAKASH R , WANG D , et al . Fe3O4 anchored onto helical carbon nanofibers as high-performance anode in lithium-ion batteries[J]. Chem. Sus. Chem., 2012, 5(8): 1397-1400. |
65 | ZHI L J , GORELIK T , FRIEDLEIN R , et al . Solid-state pyrolyses of metal phthalocyanines: a simple approach towards nitrogen-doped CNTs and metal/carbon nanocables[J]. Small, 2005, 1(8/9): 798-801. |
66 | SU P P , XIAO H , ZHAO J , et al . Nitrogen-doped carbon nanotubes derived from Zn-Fe-ZIF nanospheres and their application as efficient oxygen reduction electrocatalysts with in situ generated iron species[J]. Chemical Science, 2013, 4(7): 2941-2946. |
67 | STEINHART M , LIANG C , LYNN G W , et al . Direct synthesis of mesoporous carbon microwires and nanowires[J]. Chem. Mater., 2007, 19(10): 2383-2385. |
68 | CHAE W S , AN M J , LEE S W , et al . Templated carbon nanofiber with mesoporosity and semiconductivity[J].PhysJ. Chem. B, 2006, 110(13): 6447-6450. |
69 | FUJIKAWA D , UOTA M , SAKAI G , et al . Shape-controlled synthesis of nanocarbons from resorcinol-formaldehyde nanopolymers using surfactant-templated vesicular assemblies[J]. Carbon, 2007, 45(6): 1289-1295. |
70 | CHENG Y L , LI T H , FANG C Q , et al . Soft-templated synthesis of mesoporous carbon nanospheres and hollow carbon nanofibers[J]. Appl. Surf. Sci., 2013, 282: 862-869. |
71 | CHEN H , LI Y , TANG X H , et al . Preparation of single-handed helical carbonaceous nanotubes using 3-aminophenol-formaldehyde resin[J]. RSC Adv. , 2015, 5(50): 39946-39951. |
72 | ZHANG X Q , SUN Q , DONG W , et al . Synthesis of superior carbon nanofibers with large aspect ratio and tunable porosity for electrochemical energy storage[J]. J.Mater.Chem.A, 2013, 1(33): 9449-9455. |
73 | SUN Q , ZHANG X Q , HAN F , et al . Controlled hydrothermal synthesis of 1D nanocarbons by surfactant-templated assembly for use as anodes for rechargeable lithium-ion batteries[J]. J. Mater.Chem. , 2012, 22(33): 17049-17054. |
74 | HUANG G , LI Q , YIN D M , et al . Hierarchical porous Te@ZnCo2O4 nanofibers derived from Te@metal-organic frameworks for superior lithium storage capability[J]. Adv. Funct. Mater. , 2017, 27(5): 1604941. |
75 | HE L , ZHANG X Q , LU A H . Two-dimensional carbon-based porous materials: synthesis and applications[J]. Acta Phys: Chim. Sin., 2017, 33 (4): 709-728. |
76 | HAO G P , JIN Z Y , SUN Q , et al . Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties[J]. Energy Environ. Sci., 2013, 6: 3740-3746. |
77 | WANG S , CHENG F , ZHANG P , et al . Fabrication of high pore volume carbon nanosheets with uniform arrangement of mesopores[J]. Nano Research, 2017, 10(6): 2106-2116. |
78 | ZHANG L H , LI W C , LIU H , et al . Thermoregulated phase transition synthesis of two-dimensional carbon nanoplates rich in sp2 carbon and unimodal ultramicropores for kinetic gas separations[J]. Angew. Chem. Int. Ed., 2018, 57(6): 1632-1635. |
79 | CHENG F , LI W C , LU A H . Interconnected nanoflake network derived from a natural resource for high-performance lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2016, 8: 27843−27849. |
80 | PEKALA R W , MAY S T , KASCHMITTER J L . The aerocapacitor: an electrochemical double-layer energy-storage device[J]. Journal of the Electrochemical Society, 1993, 140(2): 446-451. |
81 | 吴峻峰, 白朔, 刘树和, 等 . 大尺寸各向同性热解炭材料的制备与表征[J]. 新型炭材料, 2006, 21(2): 119. |
WU J F , BAI S , LIU S H , et al . Fabrication and characterization of large isotropic pyrolytic carbons[J]. New Carbon Materials, 2006, 21(2): 119. | |
82 | GATICA J M , GOMEZ D M , HARTI S , et al . Monolithic honeycomb design applied to carbon materials for catalytic methane decomposition[J]. Applied Catalysis A: General, 2013, 458: 21-27. |
83 | OHTA N , NISHI Y , MORISHITA T , et al . Preparation of microporous carbon foams for water vapor in ambient air[J]. New Carbon Materials, 2008, 23(3): 216. |
84 | 吴小辉, 洪孝挺, 南俊民, 等 . 模板法合成多孔炭材料的研究现状[J]. 材料导报A: 综述篇, 2012, 26(4): 61. |
WU X H , HONG X T , NAN J M , et al . Recent progress in the templated synthesis of porous carbon materials[J]. Materials Review, 2012, 26(4): 61. | |
85 | ESTEVEZ L , DUA R , BHANDARI N , et al . A facile approach for the synthesis of monolithic hierarchical porous carbons-high performance materials for amine based CO2 capture and supercapacitor electrode[J]. Energy Environ. Sci., 2013, 6: 1785-1792. |
86 | HAO G P , LI W C , QIAN D , et al . Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents[J]. Journal of the American Chemical Society, 2011, 133(29): 11378-11388. |
87 | SIMON P , GOGOTSI Y . Materials for electrochemical capacitors[J]. Nat. Mater. , 2008, 7: 845-854. |
88 | 何水剑, 陈卫 . 碳基三维自支撑超级电容器电极材料研究进展[J]. 电化学, 2015, 21(6): 518-533. |
HE S J , CHEN W . Progress of self-supported supercapacitor electrode materials based on carbon substrates[J]. Journal of Electrochemistry, 2015, 21(6): 518-533. | |
89 | PEAN C , DAFFOS B , ROTENBERG B , et al . Confinement, desolvation, and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes[J]. J.Am.Chem.Soc.. 2015, 137: 12627. |
90 | 向宇, 曹高萍 . 双电层电容器储能机理研究概述[J]. 储能科学与技术, 2016(6): 815-826. |
XIANG Y , CAO G P . A review on the mechanism of the energy storage about the electrochemical double-layer capacitors[J]. Energy Storage Science and Technology, 2016(6): 815-826. | |
91 | WANG D W , LI F , LIU M , et al . 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angew. Chem. Int. Ed., 2008, 47: 373-376. |
92 | LIU C , LI F , MA L P, et al . Advanced materials for energy storage[J]. Adv. Mater., 2010, 22: 28-62. |
93 | HUANG Z D , ZHANG B , OH S W , et al . Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors[J]. J. Mater. Chem. , 2012, 22: 3591-3599. |
94 | XU Y X , LIN Z Y , ZHONG X , et al . Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nature Communications, 2014, 5: 4554. |
95 | TAO Y , XIE X Y , LV W , et al . Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors[J]. Scientific Reports, 2013, 3: 2975. |
96 | YANG X W , CHENG C , WANG Y F , et al . Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science, 2013, 6145(341): 534-537. |
97 | 刘道庆 . 石墨烯基高密度炭材料的制备及其超级电容器性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
LIU D Q . Research on preparation and supercapacitive properties of high-density graphene-based carbon materials[D]. Harbin: Harbin Institude of Technology, 2016. | |
98 | WU Z S , PARVEZ K , WINTER A , et al . Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors[J]. Advanced Materials, 2014, 26(26): 4552-4558. |
99 | VIX-GUTERL C , FRACKOWIAK E , KRZYSZTOF J , et al . Electrochemical energy storage in ordered porous carbon materials[J]. Carbon, 2005, 43: 1293-1302. |
100 | CHMIOLA J , YUSHIN G , GOGOTSI Y , et al . Anomalous increase in carbon capacitance at pores sizes less than 1 nm[J]. Science, 2006, 313(22): 1760-1763. |
101 | ZHANG L , YANG X , CHEN Y , et al . Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials[J]. J.Am.Chem.Soc. , 2013, 135: 5921−5929. |
102 | ANIA C O , KHOMENKO V , RAYMUNDO E , et al . The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template[J]. Advanced Functional Materials, 2007, 17: 1828-1836. |
103 | LIU H J , WANG J , WANG C X , et al . Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor[J]. Advanced Energy Materials, 2011, 1: 1101-1108. |
104 | CHMIOLA J , YUSHINR G , DASH R , et al . Effect of pore size and surface area of carbide derived carbons on specific capacitance[J]. Journal of Power Sources, 2006, 158: 765-772. |
105 | ZHANG H M , LIU J , TIAN Z F , et al . A general strategy toward transition metal carbide/carbon core/shell nanospheres and their application for supercapacitor electrode[J]. Carbon, 2016, 100: 590-599. |
106 | ZHANG H F , HE X J , GU J , et al . Wrinkled porous carbon nanosheets from methylnaphthalene oil for high-performance supercapacitors[J]. Fuel Processing Technology, 2018, 175: 10-16. |
107 | QU W H , GUO Y B , SHEN W Z , et al . Using asphaltene supermolecules derived from coal for the preparation of efficient carbon electrodes for supercapacitors[J]. J.Phys.Chem. C, 2016, 120 (28): 15105–15113. |
108 | DONG X L , WANG S Q , HE B , et al . Highly sp2 hybridized and nitrogen, oxygen dual-doped nanoporous carbon network: synthesis and application for ionic liquid supercapacitors[J]. Micropor. Mesopor. Mater., 2018, 259: 229-237. |
109 | KERISIT S , SCHWENZER B , VIJAYAKUMARM . Effects of oxygen-containing functional groups on supercapacitor performance[J]. J. Phys. Chem. Lett., 2014, 5: 2330−2334. |
110 | FRACKOWIAK E , LOTA G , MACHNIKOWSKI J , et al . Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content[J]. Electrochimica Acta, 2006, 51: 2209-2214. |
111 | ZHANG W L , XU C , MA C Q, et al . Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors[J]. Adv. Mater. , 2017, 29(36): 1701677. |
112 | WOOD K N , O'HAYRE R , PYLYPENKO S . Recent progress on nitrogen /carbon structures designed for use in energy and sustainability applications[J]. Energy Environ. Sci., 2014, 7: 1212–1249. |
113 | ZHOU Y , XU X , HUANG Y , et al . Tuning and understanding the supercapacitance of heteroatom-doped graphene[J]. Energy Storage Materials, 2015, 1: 103-111. |
114 | ROLDAN S , GRANDA M , MENENDEZ R , et al . Mechanisms of energy storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte[J]. J.Phys.Chem.C, 2011, 115(35): 17606-17611. |
115 | BALACH J , BRUNO M M , COTELLA N G , et al . Electrostatic self-assembly of hierarchical porous carbon microparticles[J]. Journal of Power Sources, 2012, 199: 386-394. |
116 | POGNON G , BROUSSE T , DEMARCONNAY L , et al . Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon[J]. Journal of Power Sources, 2011, 196(8): 4177-4122. |
117 | XU L , SHI R Y , LI H F , et al . Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors[J]. Carbon, 2018, 127: 459-468. |
118 | ZHANG X Q , LI W C , HE B , et al . Ultrathin phyllosilicate nanosheets as anode material with superior rate performance for lithium ion batteries[J]. |
Mater J. . Chem. A, 2018, 6(4): 1397-1402. | |
119 | HE B , LI W C , LU A H . High nitrogen-content carbon nanosheets formed using the Schiff-base reaction in a molten salt medium as efficient anode materials for lithium-ion batteries[J].J.Mater.Chem.A, 2015, 3: 579-585. |
120 | GUO B K , WANG X Q , FULVIO P F . Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries[J]. Adv. Mater. , 2011, 23: 4661-4666. |
121 | ZHAO J J , BULDUM A , HAN J , et al . First-principles study of Li-intercalated carbon nanotube ropes[J]. Phys. Rev. Lett. , 2000, 85: 1706-1709. |
122 | SENAMI M , LKEDA Y , FUKUSHIMA A , et al . Theoretical study of adsorption of lithium atom on carbon nanotube[J]. AIP Adv. , 2011, 1(4): 042106. |
123 | GAO B , BOWER C , LORENTZEN J D , et al . Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes[J]. Chem. Phys. Lett. , 2000, 327(1–2): 69-75. |
124 | YOO E J , KIM J , HOSONO E , et al . Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Lett. , 2008, 8 ( 8 ) : 2277-2282. |
125 | WAHID M , PUTHUSSERI D , GAWLI Y , et al . Hard carbons for sodium-ion battery anodes: synthetic strategies, material properties, and storage mechanisms[J]. Chem. Sus. Chem., 2018, 11: 506-526. |
126 | YANG J Q , ZHOU X L , WU D H , et al . S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Advanced Materials, 2017, 29: 1604108. |
127 | QIU S , XIAO L , SUSHKO M L , et al . Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Adv. Energy Mater., 2017, 7: 1700403. |
128 | DING J , WANG H , LI Z , et al . Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano, 2013, 7(12): 11004-11015. |
129 | JIN Y , SUN S , OU M , et al . High-performance hard carbon anode: tunable local structures and sodium storage mechanism[J]. ACS Appl. Energy Mater. , 2018, 1: 2295-2305. |
130 | HOU H S , QIU X Q , WEI W F , et al . Carbon anode materials for advanced sodium-ion batteries[J]. Adv. Energy Mater. , 2017, 7: 1602898. |
131 | TANG K , FU L J , WHITE R J , et al . Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Adv. Energy Mater., 2012, 2: 873–877. |
132 | 张强, 程新兵, 黄佳琦, 等 . 碳质材料在锂硫电池中的应用研究进展[J]. 新型炭材料, 2014, 29(4): 241-264. |
ZHANG Q , CHENG X B , HUANG J Q , et al . Review of carbon materials for advanced lithium-sulfur batteries[J]. New Carbon Materials, 2014, 29(4): 241-264. | |
133 | WANG D W , ZENG Q , ZHOU G , et al . Carbon-sulfur composites for Li-S batteries: status and prospects[J].MaterJ. Chem. A, 2013, 1: 9382-9394. |
134 | JAYAPRAKASH N , SHEN J , MOGANTY S S , et al . Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angew. Chem. Int. Ed. , 2011, 50: 5904-5908. |
135 | SUN Q , HE B , ZHANG X Q , et al . Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfur batteries[J]. ACS Nano, 2015, 9: 8504-8513. |
136 | ZHANG X Q , HE B , LI W C , et al . Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes[J]. Nano Research, 2018, 11(3): 1238-1246. |
137 | HE B , LI W C , YANG C , et al . Incorporating sulfur inside the pores of carbons for advanced lithium-sulfur batteries: an electrolysis approach[J]. ACS Nano, 2016, 10: 1633−1639. |
[1] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[2] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[3] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[4] | 郭立行, 庞蔚莹, 马克遥, 杨镓涵, 孙泽辉, 张盼, 付东, 赵昆. 层序空间多孔结构TiO2实现高效光催化CO2还原[J]. 化工进展, 2023, 42(7): 3643-3651. |
[5] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[6] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[7] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[8] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
[9] | 张孟旭, 王红琴, 李金, 安霓虹, 戴云生, 钱颖, 沈亚峰. PtSn/MgAl2O4-sheet催化剂的制备及其PDH反应性能[J]. 化工进展, 2023, 42(3): 1365-1372. |
[10] | 田甜, 雷西萍, 于婷, 樊凯, 宋晓琪, 朱航. 碳材料在柔性超级电容器中的研究进展[J]. 化工进展, 2023, 42(2): 884-896. |
[11] | 卓祖优, 宋生南, 黄明堦, 杨旋, 卢贝丽, 陈燕丹. 草酸钾-尿素协同活化法制备超大比表面积面粉基多级孔炭及其电化学储能应用[J]. 化工进展, 2023, 42(2): 925-933. |
[12] | 刘培慧, 刘宇喆, 李琳, 王少辉, 王同华. 具有多级孔道结构的高比表面多孔炭活化策略及VOCs吸附性能[J]. 化工进展, 2022, 41(S1): 613-621. |
[13] | 田亚州, 胡钰婧, 李继友, 任江燕, 王立伟, 王修利, 丁颖, 程珏, 张军营. 香草醇基环氧树脂的合成、固化动力学及性能[J]. 化工进展, 2022, 41(S1): 477-484. |
[14] | 曾龙, 郑贵森, 邓大祥, 孙健, 刘永恒. 多孔壁面微通道换热性能的实验研究[J]. 化工进展, 2022, 41(9): 4625-4634. |
[15] | 龙垠荧, 杨健, 管敏, 杨怡洛, 程正柏, 曹海兵, 刘洪斌, 安兴业. 木质素基材料在混合型超级电容器电极材料中的研究进展[J]. 化工进展, 2022, 41(9): 4855-4865. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |