化工进展 ›› 2019, Vol. 38 ›› Issue (03): 1443-1451.DOI: 10.16085/j.issn.1000-6613.2018-0905
收稿日期:
2018-05-03
修回日期:
2018-11-16
出版日期:
2019-03-05
发布日期:
2019-03-05
作者简介:
基金资助:
Shaobin YANG(),Yaohan JI,Ding SHEN
Received:
2018-05-03
Revised:
2018-11-16
Online:
2019-03-05
Published:
2019-03-05
摘要:
氧化石墨烯液晶(GOLCs)是氧化石墨烯薄片分散在水或极性有机溶剂中形成的宏观介晶有序、微观各向异性的液晶相,在自组装膜、储能、液晶显示器和超强纤维等领域展现良好的应用前景。本文首先介绍了氧化石墨烯液晶具有向列相、层状相和手性相等结构特征;具体综述了氧化石墨烯液晶相变的影响因素、调控途径及其原理,包括氧化石墨烯的尺寸及其分布、氧化石墨烯的氧化程度、氧化石墨烯在溶液中的质量/体积分数、溶剂的极性、溶液的pH以及添加盐的种类、浓度,外界施加的电场或磁场;最后简单介绍了氧化石墨烯液晶在电化学及其他方面的潜在应用。本文为调控氧化石墨烯液晶的相结构、开发多功能氧化石墨烯液晶及拓宽氧化石墨烯液晶的应用领域提供了理论指导。
中图分类号:
杨绍斌,籍遥函,沈丁. 氧化石墨烯液晶相结构的调控及应用进展[J]. 化工进展, 2019, 38(03): 1443-1451.
Shaobin YANG,Yaohan JI,Ding SHEN. Phase structure control and applications of graphene oxide liquid crystals[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1443-1451.
GO | DL | σ D | 宽高比 |
---|---|---|---|
A | 1.65 | 1.28 | 1600 |
B | 1.22 | 1.16 | 1200 |
C | 0.75 | 0.88 | 700 |
表1 氧化石墨烯A-C的平均直径<D>、直径标准差σ D和
GO | DL | σ D | 宽高比 |
---|---|---|---|
A | 1.65 | 1.28 | 1600 |
B | 1.22 | 1.16 | 1200 |
C | 0.75 | 0.88 | 700 |
1 | CHUARD T , DESCHENAUX R . First fullerene[60]-containing thermotropic liquid crystal. preliminary communication[J]. Helvetica Chimica Acta, 1996, 79(3): 736-741. |
2 | BEHABTU N , LOMEDA J R , GREEN M J , et al . Spontaneous high-concentration dispersions and liquid crystals of graphene[J]. Nature Nanotechnology, 2010, 5(6): 406-411. |
3 | ZAMORA-LEDEZMA C , PUECH N , ZAKRI C , et al . Liquid crystallinity and dimensions of surfactant-stabilized sheets of reduced graphene oxide[J]. The Journal of Physical Chemistry Letters,2012,3(17): 2425-2430. |
4 | XU Z , GAO C . Aqueous liquid crystals of graphene oxide[J]. ACS Nano, 2011, 5(4): 2908-2915. |
5 | KIM J E, HAN T H , LEE S H, et al . Graphene oxide liquid crystals[J]. Angewandte Chemie International Edition, 2011, 50(13): 3043-3047. |
6 | JALILI R , ABOUTALEBI S H , ESRAFILZADEH D , et al . Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures[J]. ACS Nano, 2013,7(5): 3981-3990. |
7 | DREYER D R , TODD A D , BIELAWSKI C W . Harnessing the chemistry of graphene oxide[J]. Chemical Society Reviews, 2014, 43(15): 5288-5301. |
8 | LEE S H,LEE D H,LEE W J,et al . Tailored assembly of carbon nanotubes and graphene[J]. Advanced Functional Materials, 2011, 21(8): 1338-1354. |
9 | KIM J Y,KIM B H, HWANG J O ,et al . Flexible and transferrable self-assembled nanopatterning on chemically modified graphene[J]. Advanced Materials, 2013,25(9): 1331-1335. |
10 | YUN J M ,KIM K N,KIM J Y, et al . DNA origami nanopatterning on chemically modified graphene[J]. Angewandte Chemie: International Edition, 2012, 124(4): 936-939. |
11 | HWANG J O ,LEE D H,KIM J Y,et al . Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission[J]. Journal of Materials Chemistry,2011,21(10): 3432-3437. |
12 | LEE D H,LEE J A,LEE W J,et al . Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films[J]. Small,2011,7(1): 95-100. |
13 | HAN T H ,LEE W J,LEE D H,et al . Peptide/graphene hybrid assembly into core/shell nanowires[J]. Advanced Materials,2010,22(18): 2060-2064. |
14 | BRODIE B C . Sur le poids atomique du graphite[J]. Ann. Chim. Phys.,1860, 59(466): e472. |
15 | STAUDENMAIER L . Verfahren zur darstellung der graphitsäure[J]. European Journal of Inorganic Chemistry,1898,31(2): 1481-1487. |
16 | HUMMERES Jr W S , OFFEMAN R E . Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6): 1339-1339. |
17 | DIMIEV A M , TOUR J M . Mechanism of graphene oxide formation[J]. ACS Nano,2014,8(3): 3060-3068. |
18 | MARCANO D C , KOSYNKIN D V , BERLIN J M ,et al . Improved synthesis of graphene oxide[J]. ACS Nano,2010,4(8): 4806-4814. |
19 | PENG L , XU Z , LIU Z ,et al . An iron-based green approach to 1-h production of single-layer graphene oxide[J]. Nature Communications,2015, 6: 5716. |
20 | YU C , WANG C F , CHEN S . Facile access to graphene oxide from ferro-induced oxidation[J]. Scientific Reports, 2016, 6: 17071. |
21 | BLUNH D , PRAEFCKE K , VILL V ,et al . Amphotropic liquid crystals[M]//PRAEFCKE K, VILI V. Handbook of Liquid Crystals Set., New York: John wiley&sons Inc. 1998: 305-340. |
22 | 童丽萍 . 氧化石墨烯基材料的液晶性与光子晶体研究及在交联酶聚体制备中的应用[D]. 天津:天津大学, 2014. |
TONG L P . Studies on graphene oxide-based materials: liquid crystals, photonic crystals and cross-linked enzyme aggregates[D]. Tianjin: Tianjin University, 2014. | |
23 | SCALIA G , BÜHLER C VON , HÄGELE C ,et al . Spontaneous macroscopic carbon nanotube alignment via colloidal suspension in hexagonal columnar lyotropic liquid crystals[J]. Soft Matter,2008,4(3): 570-576. |
24 | PISULA W , KASTLER M , WASSERFALLEN D ,et al . Exceptionally long-range self-assembly of hexa-peri-hexabenzocoronene with dove-tailed alkyl substituents[J]. Journal of the American Chemical Society,2004,126(26): 8074-8075. |
25 | XU Z , GAO C . Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications,2011,2:571. |
26 | FERNSLER J , HOUGH L , SHAO R F ,et al . Giant-block twist grain boundary smectic phases[J]. Proceedings of the National Academy of Sciences,2005,102(40): 14191-14196. |
27 | ONSAGER L . Anisotropic solutions of colloids[J]. Phys. Rev., 1942, 62(558): 12. |
28 | ONSAGER L . The effects of shape on the interaction of colloidal particles[J]. Annals of the New York Academy of Sciences,1949,51(14): 627-659. |
29 | KOOIJ F M VAN DER , LEKKERKERKER H N . Formation of nematic liquid crystals in suspensions of hard colloidal platelets[J]. The Journal of Physical Chemistry B,1998,102(40): 7829-7832. |
30 | KOOIJ F M VAN DER , KASSAPIDOU K , LEKKERKERKER H N . Liquid crystal phase transitions in suspensions of polydisperse plate-like particles[J].Nature,2000,406(6798): 868-871. |
31 | ABOUTALEBI S H , GUDARZI M M , ZHENG Q B ,et al . Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions[J]. Advanced Functional Materials,2011,21(15): 2978-2988. |
32 | DAN B, BEHABTU N , MARTINEZ A ,et al . Liquid crystals of aqueous, giant graphene oxide flakes[J]. Soft Matter,2011,7(23): 11154-11159. |
33 | OH J Y, PARK J , JEONG Y C ,et al . Secondary interactions of graphene oxide on liquid crystal formation and stability[J]. Particle & Particle Systems Characterization,2017,34(9): 16003831. |
34 | AL-ZANGANA S , ILIUT M , TURNER M ,et al . Confinement effects on lyotropic nematic liquid crystal phases of graphene oxide dispersions[J]. 2D Materials,2017,4(4): 0410041-10. |
35 | TKACZ R , OLDENBOURG R , MEHTA S B ,et al . pH dependent isotropic to nematic phase transitions in graphene oxide dispersions reveal droplet liquid crystalline phases[J]. Chemical Communications,2014,50(50): 6668-6671. |
36 | ZHAO X L , XU Z , XIE Y ,et al . Polyelectrolyte-stabilized graphene oxide liquid crystals against salt, pH, and serum[J]. Langmuir,2014,30(13): 3715-3722. |
37 | HUANG X , HE J X , SUN K , et al . Liquid crystal behavior and cytocompatibility of graphene oxide dispersed in sodium alginate solutions[J]. Carbon, 2018, 129: 258-269. |
38 | SHEN T Z , HONG S H , SONG J K . Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient[J]. Nature Materials,2014,13(4): 394-399. |
39 | AHMAD R T M , HONG S H , SHEN T Z ,et al . Optimization of particle size for high birefringence and fast switching time in electro-optical switching of graphene oxide dispersions[J]. Optics Express,2015,23(4): 4435-4440. |
40 | LEE W J, MAITI U N ,LEE J M,et al . Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications[J]. Chemical Communications,2014,50(52): 6818-6830. |
41 | GHOSH D ,KIM S O . Chemically modified graphene based supercapacitors for flexible and miniature devices[J]. Electronic Materials Letters,2015,11(5): 719-734. |
42 | MAITI U N ,LIM J,LEE K E,et al . Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors[J]. Advanced Materials,2014,26(4): 615-619. |
43 | CHIDEMBO A T , ABOUTALEBI S H , KONSTANTINOV K ,et al . Liquid crystalline dispersions of graphene-oxide-based hybrids: a practical approach towards the next generation of 3D isotropic architectures for energy storage applications[J]. Particle & Particle Systems Characterization,2014,31(4): 465-473. |
44 | KOU L , LIU Z , HUANG T Q , et al . Wet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes[J]. Nanoscale, 2015, 7(9): 4080-4087. |
45 | WANG B , LIU J Z , ZHAO Y , et al . Role of graphene oxide liquid crystals in hydrothermal reduction and supercapacitor performance[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22316-22323. |
46 | SHAIBANI M , AKBARI A , SHEATH P , et al . Suppressed polysulfide crossover in Li-S batteries through a high-flux graphene oxide membrane supported on a sulfur cathode[J]. ACS Nano, 2016, 10(8): 7768-7779. |
47 | CHEN W , YAN L . Centimeter-sized dried foam films of graphene: preparation, mechanical and electronic properties[J]. Advanced Materials,2012,24(46): 6229-6233. |
48 | CHEN W , LI S , CHEN C , et al . Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel[J]. Advanced Materials, 2011, 23(47): 5679-5683. |
49 | SHEN T Z , HONG S H , SONG J K . Effect of centrifugal cleaning on the electro-optic response in the preparation of aqueous graphene-oxide dispersions[J]. Carbon,2014,80:560-564. |
50 | HE L Q , YE J , SHUAI M ,et al . Graphene oxide liquid crystals for reflective displays without polarizing optics[J]. Nanoscale, 2015, 7(5): 1616-1622. |
51 | 许震 . 石墨烯液晶及宏观组织纤维[D]. 杭州: 浙江大学,2013. |
XU Z . Graphene liquid crystals and macroscopically assembled fibers[D]. Hangzhou: Zhejiang University, 2013. | |
52 | XIN G Q , YAO T K , SUN H T , et al . Highly thermally conductive and mechanically strong graphene fibers[J]. Science, 2015, 349(6252): 1083-1087. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[5] | 时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[6] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[7] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[8] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[9] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[10] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[11] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[12] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[13] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[14] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[15] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |