[1] 罗永勤,武国亮,牛彪,等. 膨胀石墨的制备工艺及应用研究进展[J]. 化工生产与技术,2015(5):29-34. LUO Y Q,WU G L,NIU B,et al. Advances in preparation and application of expanded graphite[J]. Chemical Production and Technology,2015(5):29-34. [2] 罗立群,谭旭升,田金星. 石墨提纯工艺研究进展[J]. 化工进展,2014,33(8):2110-2116. LUO L Q,TAN X S,TIAN J X. Research progress of graphite purification[J]. Chemical Industry and Engineering Progress,2014,33(8):2110-2116. [3] 万为敏,雷新荣,吴红丹,等. 无硫可膨胀石墨的制备及机理研究[J]. 非金属矿,2009(2):14-16,29. WAN W M,LEI X R,WU H D,et al. Studies on preparation and mechanism of sulfur-free expandable graphite[J]. Non-Metallic Mines,2009(2):14-16,29. [4] 吴会兰,张兴华. 低温可膨胀石墨的制备[J]. 非金属矿,2011(1):26-28,32. WU H L,ZHANG X H. Preparation and characterization of expandable graphite at low temperature[J]. Non-Metallic Mines,2011(1):26-28,32. [5] 叶飞,朱晨光,张紫浩. 可膨胀石墨的线性膨胀模型研究[J]. 炭素技术,2015(1):10-14,26. YE F,ZHU C G,ZHANG Z H. Study on the linear expansion model of expandable graphite[J]. Carbon Techniques,2015(1):10-14,26. [6] 陈建,赵金平,邹本哲. 膨胀石墨膨胀机理的研究[J]. 炭素技术,2007,26(6):12-15. CHEN J,ZHAO J P,ZOU B Z. Study on expansion mechanism of expanded graphite[J]. Carbon Techniques,2007,26(6):12-15. [7] INAGAKI M,SUMA T. Pore structure analysis of exfoliated graphite using image processing of scanning electron micrographs[J]. Carbon,2001,39(6):915-920. [8] 柏丽梅,刘柏英. 膨胀石墨的饱和吸附量与微观结构的关系[J]. 哈尔滨理工大学学报,2009,14(3):81-84. BO L M,LIU B Y. Relations between the saturated absorption and micro-structure of expanded graphite[J]. Journal of Harbin University of Science and Technology,2009,14(3):81-84. [9] 周伟,董建,兆恒,等. 膨胀石墨结构的研究[J]. 炭素技术,2000(4):26-30. ZHOU W,DONG J,ZHAO H,et al. Study on the structure of expanded graphite[J]. Carbon Techniques,2000(4):26-30. [10] ROUQUEROL J,AVNIR D,EVERETT D H,et al. Guidelines for the characterization of porous solids[J]. Studies in Surface Science and Catalysis,1994,87:1-9. [11] CELZARD A,MARÊCHÉJ F,FURDIN G. Modelling of exfoliated graphite[J]. Progress in Materials Science,2005,50(1):93-179. [12] 黎梅. 超声波和膨胀石墨相结合处理染料废水的研究[D]. 保定:河北大学化学与环境科学学院,2008. LI M. Study on treatmentof dye wastewater by comblnation of ultrasound and exfoliated graphite[D]. Baoding:School of Chemistry and Environmental Science,Hebei Urilversity,2008. [13] 吕溥. 膨胀石墨的制备表征及其吸附性能研究[D]. 保定:河北大学化学学院,2008. LV B. Study on the preparing technics and characteristics of expanded graphite and its adsorbtion capacities[D].Baoding:School of Chemistry,Hebei Univesity,2008. [14] 张帆,李菁,谭建华,等. 吸附法处理重金属废水的研究进展[J]. 化工进展,2013,32(11):2749-2756. ZHANG F,LI J,TAN J H,et al. Advance of the treatment of heavy metal wastewater by adsorption[J]. Chemical Industry and Engineering Progress,2013,32(11):2749-2756. [15] 周佳甜,令狐文生. 膨胀石墨的特性及其应用研究进展[J]. 广州化工,2012,40(22):39-40. ZHOU J T,LINGHU W S. The characteristics of expanded graphite and its application research progress[J]. Guangzhou Chemical Industry,2012,40(22):39-40. [16] 陈星运,贺江平,舒远杰. 纳米石墨片/环氧树脂复合材料的制备及性能[J]. 化工进展,2011,30(6):1306-1312. CHEN X Y,HE J P,SHU Y J. Preparation and properties of graphite nanosheets/epoxy composites[J]. Chemical Industry and Engineering Progress,2011,30(6):1306-1312. [17] 陈作如,万纯,李永富. 膨胀石墨蠕虫的红外衰减性能研究[J]. 材料科学与工程学报,2005,23(1):42-44. CHEN Z R,WAN C,LI Y F. Study on infrared attenuation characteristic of expanded graphite worm[J]. Journal of Materials Science & Engineering,2005,23(1):42-44. [18] 刘定福,陆海洁,吴子典,等. 超细鳞片石墨制备可膨胀石墨工艺及影响因素[J]. 炭素技术,2013,32(2):16-19. LIU D F,LU H J,WU Z D,et al. Preparation and influence factors of expandable graphite with ultrafine flake graphite[J]. Carbon Techniques,2013,32(2):16-19. [19] 刘国钦,赖奇,李玉峰. 石墨粒度对膨胀石墨孔隙结构的影响[J]. 四川大学学报(自然科学版),2007(1):141-144. LIU G Q,LAI Q,LI Y F. Effect of graphite granularity on the pore structure[J]. Journal of Sichuan University(Natural Science Edition),2007(1):141-144. [20] 刘定福,李波,陆海洁,等. 可膨胀石墨电化学氧化法制备工艺研究进展[J]. 炭素技术,2013(3):49-51,6. LIU D F,LI B,LU H J,et al. Progress on the preparation technology of expandable graphite by electrochemical oxidation[J]. Carbon Techniques,2013(3):49-51,6. [21] 周丹凤,田金星. 膨胀石墨的化学氧化法制备的研究进展[J]. 中国非金属矿工业导刊,2012(1):27-30. ZHOU D F,TIAN J X. The development of producing expanded graphite via chemical oxidization method[J]. China Non-Metallic Minerals Industry,2012(1):27-30. [22] 陈小伟. 低污染可膨胀石墨的制备及稳定性研究[D]. 青岛:青岛大学材料科学与工程学院,2009. CHEN X W. Preparation and stability research of low-polluted expanded graphite[D]. Qingdao:School of Materials Science and Engineering,Qingdao University,2009. [23] CALAS-BLANCHARD C,COMTAT M,MARTY J L,et al. Textural characterisation of graphite matrices using electrochemical methods[J]. Carbon,2003,41(1):123-130. [24] LI J,LI J,LI M. Preparation of expandable graphite with ultrasound irradiation[J]. Materials Letters,2007,61(28):5070-5073. [25] LI J,SHI H,LI N,et al. Ultrasound-assisted preparation of alkaline graphite intercalation compounds[J]. Ultrasonics Sonochemistry,2010,17(5):745-748. [26] LI J,LI J,LI M. Ultrasound irradiation prepare sulfur-free and lower exfoliate-temperature expandable graphite[J]. Materials Letters,2008,62(14):2047-2049. [27] 鲜海洋,彭同江,孙红娟. 氧化程度对微细鳞片可膨胀石墨结构及膨胀性的影响[J]. 无机化学学报,2014(11):2537-2543. XIAN H Y,PENG T J,SUN H J. Effect of oxidation degree on structure and expansion performance of expandable fine graphite[J]. Chinese Journal of Inorganic Chemistry,2014(11):2537-2543. [28] 郭垒,张大志,徐铭,等. 影响膨胀石墨体积的制备工艺研究[J]. 化工科技,2011(5):35-38. GUO L,ZHANG D Z,XU M,et al. The factors influencing expanded volume for preparation of expanded graphite[J],Science and Technology in Chemical Industry,2011(5):35-38. [29] SYKAM N,KAR K K. Rapid synthesis of exfoliated graphite by microwave irradiation and oil sorption studies[J]. Materials Letters,2014,117:150-152. [30] 吕超,王煊军,吕晓猛. 微波膨化对膨胀石墨性能影响分析[J]. 科技资讯,2013(8):109-110. LV C,WANG X J,LV X M. Microwave puffing of expanded graphite performance impact[J]. Science and Technology Information,2013(8):109-110. [31] TRYBA B,MORAWSKI A W,INAGAKI M. Preparation of exfoliated graphite by microwave irradiation[J]. Carbon,2005,43(11):2417-2419. [32] 张东,田胜力,肖德炎. 微波法制备纳米多孔石墨[J]. 非金属矿,2004(6):22-24. ZHANG D,TIAN S L,XIAO D Y. Preparation of nanopore graphite by microwave method[J]. Non-Metallic Mines,2004(6):22-24. [33] 曹乃珍,沈万慈,温诗铸,等. 膨胀石墨孔结构的影响因素[J]. 材料科学与工程,1996,14(4):23-27. CAO N Z,SHEN W C,WEN S Z,et al. The factors influencing the porous structure of expanded graphite[J]. Materials Science and Engineering,1996,14(4):23-27. [34] 王楠. 膨胀石墨对污染物的去除性能研究[D]. 哈尔滨:工业大学市政环境工程学院,2006. WANG N. Study on the removal of pollutants by expanded graphite[D]. Harbin:School of Municipal and Environmental Engineering,Harbin Institute of Technology,2006. [35] 陈金妹,谈萍,王建永. 气体吸附法表征多孔材料的比表面积及孔结构[J]. 粉末冶金工业,2011,21(2):45-49. CHEN J M,TAN P,WANG J Y. Characterization of pore structure and specific surface area based on gas adsorption applied for porous materials[J]. Powder Metallurgy Industry,2011,21(2):45-49. [36] 田华,张水昌,柳少波,等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报,2012,33(3):419-427. TIAN H,ZHANG Y C,LIU S B,et al. Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J]. Acta Petrolei Sinica,2012,33(3):419-427. [37] 张志,杜杰,朱宏志. 低温氮气吸附法研究海绵钯比表面积和孔径分布[J]. 稀有金属,2011,35(3):411-416. ZHANG Z,DU J,ZHU H Z. Surface area and pore distribution of sponge palladium by low temperature nitrogen adsorption method[J]. Chinese Journal of Rare Metals,2011,35(3):411-416. [38] 陈悦,李东旭. 压汞法测定材料孔结构的误差分析[J]. 硅酸盐通报,2006,25(4):198-201,207. CHEN Y,LI D X. Analysis of error for pore structure of porous materials measured by MIP[J]. Bulletin of the Chinese Ceramic Society,2006,25(4):198-201,207. [39] 王红梅. 压汞法测定多孔材料孔结构的误差[J]. 广州化工,2009,37(1):109-111. WANG H M. Mercury determination the error of structure of porous material[J]. Guangzhou Chemical Industry,2009,37(1):109-111. [40] MOURA M J,FERREIRA P J,FIGUEIREDO M M. Mercury intrusion porosimetry in pulp and paper technology[J]. Powder Technology,2005,160(2):61-66. [41] 承秋泉,陈红宇,范明,等. 盖层全孔隙结构测定方法[J]. 石油实验地质,2006,28(6):604-608. CHENG Q Q,CHEN H Y,FAN M,et al. Determination of the total pore texture of caprock[J]. Petroleum Geology and Experiment,2006,28(6):604-608. [42] 赵静,张红. 氧化石墨烯的可控还原及表征[J]. 化工进展,2015,34(9):3383-3387. ZHAO J,ZHANG H. Controllable reduction and characterization of graphene oxide[J]. Chemical Industry and Engineering Progress,2015,34(9):3383-3387. [43] 刘永强. 小角度XRD的实现及应用[D]. 杭州:杭州电子科技大学电子信息学院,2014. LIU Y Q. The implementation and application of small angle XRD[D]. Hangzhou:College of Electronics and Information Engineering,Hangzhou Dianzi University, 2014. [44] 刘岁林,田云飞,陈红,等. 原子力显微镜原理与应用技术[J]. 现代仪器,2006(6):9-12. LIU S L,TIAN Y F,CHEN H,et al. The principle and using technology of atomic force microscopy[J]. Modern Instruments,2006(6):9-12. [45] 蒋正武,邓子龙,张楠. 热孔计法表征水泥基材料孔结构[J]. 硅酸盐学报,2012,40(8):1081-1087. JIANG Z W,DENG Z L,ZHANG L. Pore structure characterization of cement-based material by theormoporometry[J]. Journal of the Chinese Ceramic Society,2012,40(8):1081-1087. [46] 蒋正武,张楠,杨正宏. 热孔计法表征水泥基材料孔结构的热力学计算模型[J]. 硅酸盐学报,2012,40(2):194-199. JIANG Z W,ZHANG N,YANG Z H. Thermodynamic calculational model for pore structure characterization of cement-based material by thermoporometry[J]. Journal of the Chinese Ceramic Society,2012,40(2):194-199. [47] 周云洁. 基于时域核磁共振技术的木材孔径分布研究[D]. 呼和浩特:内蒙古农业大学材料科学与艺术设计学院,2015. ZHOU Y J. Study of wood pore size distribution based on time-domain nuclear magnetic resonance[D]. Hohhot:College of Material Science and Art Design,Inner Mongolia Agricultural University,2015. [48] MITCHELL J,WEBBER J B W,STRANGE J H. Nuclear magnetic resonance cryoporometry[J]. Physics Reports,2008,461(1):1-36. [49] IBBETT R N,SCHUSTER K C,FASCHING M. The study of water behaviour in regenerated cellulosic fibres by low-resolution proton NMR[J]. Polymer,2008,49(23):5013-5022. [50] 马梦佳,陈玉云,闫志强,等. 原子力显微镜在纳米生物材料研究中的应用[J]. 化学进展,2013,32(1):135-144. MA M J,CHEN Y Y,YAN Z Q,et al. Applications of atomic force microscopy in nanobiomaterials research[J]. Progress in Chemistry,2013,32(1):135-144. |