化工进展 ›› 2021, Vol. 40 ›› Issue (12): 6629-6639.DOI: 10.16085/j.issn.1000-6613.2021-0081
李翔1(), 王学谦1(), 李鹏飞2, 王郎郎1, 宁平1(), 马懿星1, 曹睿1, 钟磊1
收稿日期:
2021-01-13
修回日期:
2021-03-12
出版日期:
2021-12-05
发布日期:
2021-12-21
通讯作者:
王学谦,宁平
作者简介:
李翔(1989—),男,博士研究生,研究方向为工业废气净化及资源化。E-mail:基金资助:
LI Xiang1(), WANG Xueqian1(), LI Pengfei2, WANG Langlang1, NING Ping1(), MA Yixing1, CAO Rui1, ZHONG Lei1
Received:
2021-01-13
Revised:
2021-03-12
Online:
2021-12-05
Published:
2021-12-21
Contact:
WANG Xueqian,NING Ping
摘要:
高炉煤气(BFG)作为炼铁过程中副产的可燃气体,具有明显的资源回收价值,但其同时存在热值低、成分复杂等问题。目前大多数研究集中在对羰基硫(COS)、硫化氢(H2S)等有害成分的脱除,而鲜有对高炉煤气特征组分的研究或报道。研究者对高炉煤气特征组分的来源、生成路径等不明朗,导致在研究过程中忽略了煤气复杂组分的相互影响,很多技术在工业应用时问题频发。本文阐述并分析了高炉煤气特征组分的来源及生成路径,进而讨论了高炉煤气特征组分对脱硫过程的影响。高炉原料、燃料和空气在高温条件下经过复杂的化学反应,生成粉尘、N2、O2、CO、CO2、H2、CH4、H2O、HCl、HCN、硫化物等共同组成高炉荒煤气,荒煤气中的O2、COx、H2、H2O、HCl、硫化物等化学成分对COS转化或H2S脱除过程产生影响,导致催化剂中毒或转化率下降。本文通过分析探讨特征组分在高炉煤气产生和脱硫净化过程中的相互作用及影响规律,为超低排放背景下高炉煤气的净化和资源化提供方向和参考。
中图分类号:
李翔, 王学谦, 李鹏飞, 王郎郎, 宁平, 马懿星, 曹睿, 钟磊. 高炉煤气特征组分分析及其对脱硫过程的影响研究进展[J]. 化工进展, 2021, 40(12): 6629-6639.
LI Xiang, WANG Xueqian, LI Pengfei, WANG Langlang, NING Ping, MA Yixing, CAO Rui, ZHONG Lei. Progress on characteristic components analysis of blast furnace gas and its influence on desulfurization process[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6629-6639.
化学成分 | 体积分数/% |
---|---|
CO | 22~27 |
CO2 | 13~19 |
H2 | 1~4 |
CH4 | 0.2~0.4 |
N2 | 54~58 |
O2 | 0.06~0.4 |
硫化物 | 微量 |
其他 | 微量 |
表1 高炉煤气的主要化学成分及含量
化学成分 | 体积分数/% |
---|---|
CO | 22~27 |
CO2 | 13~19 |
H2 | 1~4 |
CH4 | 0.2~0.4 |
N2 | 54~58 |
O2 | 0.06~0.4 |
硫化物 | 微量 |
其他 | 微量 |
硫化物种类 | 含量/mg·m-3 |
---|---|
COS | 86~118 |
H2S | 20~60 |
SO2 | <1 |
CS2 | <1 |
CH3SH | <0.5 |
CH3SSCH3 | <0.1 |
C4H4S | <0.1 |
CH3SCH3 | <0.1 |
表2 高炉煤气中硫化物的种类及含量
硫化物种类 | 含量/mg·m-3 |
---|---|
COS | 86~118 |
H2S | 20~60 |
SO2 | <1 |
CS2 | <1 |
CH3SH | <0.5 |
CH3SSCH3 | <0.1 |
C4H4S | <0.1 |
CH3SCH3 | <0.1 |
粉尘种类 | 质量分数/% |
---|---|
焦炭粉末 | 7~43 |
SiO2 | 17~25 |
CaO | 11~15 |
MgO | 3~8 |
Al2O3 | 10~15 |
Fe2O3 | 5~15 |
烧失量 | 11~15 |
表3 高炉煤气中粉尘种类及含量
粉尘种类 | 质量分数/% |
---|---|
焦炭粉末 | 7~43 |
SiO2 | 17~25 |
CaO | 11~15 |
MgO | 3~8 |
Al2O3 | 10~15 |
Fe2O3 | 5~15 |
烧失量 | 11~15 |
粒径范围/μm | 质量分数/% |
---|---|
>40 | 81.2 |
40~30 | 5.03 |
30~20 | 1.58 |
20~10 | 1.27 |
10~5 | 0.79 |
<5 | 11.2 |
表4 质量粒径分布
粒径范围/μm | 质量分数/% |
---|---|
>40 | 81.2 |
40~30 | 5.03 |
30~20 | 1.58 |
20~10 | 1.27 |
10~5 | 0.79 |
<5 | 11.2 |
温度/℃ | 含水量/g·m-3 |
---|---|
30 | 31.8 |
35 | 42.7 |
40 | 56.8 |
45 | 75.6 |
表5 湿法除尘后高炉煤气温度及对应的含水量
温度/℃ | 含水量/g·m-3 |
---|---|
30 | 31.8 |
35 | 42.7 |
40 | 56.8 |
45 | 75.6 |
1 | 刘文权, 吴记全. 高炉煤气高效、高值和创新利用技术[C]//第十二届中国钢铁年会论文集. 北京, 2019: 582-586. |
LIU Wenquan, WU Jiquan. High efficiency, high value and innovative utilization technology of blast furnace gas[C]// Proceedings of the 12th China Iron and Steel Annual Conference. Beijing: The Chinese Society for Metals, 2019: 582-586. | |
2 | LU Z D, GU H Z, CHEN L K, et al. A review of blast furnace iron-making at Baosteel facilities[J]. Ironmaking & Steelmaking, 2019, 46(7): 618-624. |
3 | 张波, 薛庆斌, 牛得草, 等. 高炉煤气利用现状及节能减排新技术[J]. 炼铁, 2018, 37(2): 51-55. |
ZHANG Bo, XUE Qingbin, NIU Decao, et al. Utilization result of BFG and new technology in energy conservation and emission reduction[J]. Ironmaking, 2018, 37(2): 51-55. | |
4 | STALINSKII D V, KANENKO G M, ALKHASOVA V V, et al. Purification of blast-furnace gas and energy conservation[J]. Steel in Translation, 2008, 38(6): 499-504. |
5 | 王一坤, 雷小苗, 邓磊, 等. 可燃废气利用技术研究进展(Ⅰ): 高炉煤气、转炉煤气和焦炉煤气[J]. 热力发电, 2014, 43(7): 1-9, 14. |
WANG Yikun, LEI Xiaomiao, DENG Lei, et al. A review on utilization of combustible waste gas(Ⅰ): blast furnace gas, converter gas and coke oven gas[J]. Thermal Power Generation, 2014, 43(7): 1-9, 14. | |
6 | LANZERSTORFER C, PREITSCHOPF W, NEUHOLD R, et al. Emissions and removal of gaseous pollutants from the top-gas of a blast furnace[J]. ISIJ International, 2019, 59(3): 590-595. |
7 | LANZERSTORFER C, KRÖPPL M. Air classification of blast furnace dust collected in a fabric filter for recycling to the sinter process[J]. Resources, Conservation and Recycling, 2014, 86: 132-137. |
8 | 于勇, 朱廷钰, 刘霄龙. 中国钢铁行业重点工序烟气超低排放技术进展[J]. 钢铁, 2019, 54(9): 1-11. |
YU Yong, ZHU Tingyu, LIU Xiaolong. Progress of ultra-low emission technology for key processes of iron and steel industry in China[J]. Iron & Steel, 2019, 54(9): 1-11. | |
9 | SUN W Q, WANG Z H, WANG Q. Hybrid event-, mechanism- and data-driven prediction of blast furnace gas generation[J]. Energy, 2020, 199: 117497. |
10 | 张显鹏. 铁合金辞典[M]. 沈阳: 辽宁科学技术出版社, 1996. |
ZHANG Xianpeng. Dictionary of ferroalloy[M]. Shenyang: Liaoning Science and Technology Press, 1996. | |
11 | 刘二浩, 王强, 刘杰, 等. 高炉煤气布袋除尘系统管道板结原因分析及控制[J]. 河北冶金, 2020(2): 55-57. |
LIU Erhao, WANG Qiang, LIU Jie, et al. Cause analysis and control of pipeline hardening in blast furnace gas bag dust collection system[J]. Hebei Metallurgy, 2020(2): 55-57. | |
12 | TENG A J, HU B S, GUI Y L, et al. Influence of blast furnace top gas composition and dust on HCl removal with low temperature Ca-based dechlorination agent[J]. Journal of Central South University, 2018, 25(8): 1920-1927. |
13 | 田敬龙. 高炉煤气干法除尘技术发展现状及宝钢应用前景[J]. 冶金动力, 2007, 26(6): 20-21, 30. |
TIAN Jinglong. Present situation of dry process dusting technology of blast furnace gas and its application prospect in Baoshan iron & steel co., ltd[J]. Metallurgical Power, 2007, 26(6): 20-21, 30. | |
14 | 韩明荣, 黄龙强, 王英. 高炉煤气袋式除尘系统的问题及改进[J]. 环境工程学报, 2007, 1(10): 79-82. |
HAN Mingrong, HUANG Longqiang, WANG Ying. Problems and improvement of blast furnace gas baggy dust disposal system[J]. Chinese Journal of Environmental Engineering, 2007, 1(10): 79-82. | |
15 | 赵彬. 高炉煤气布袋除尘技术的应用研究[D]. 唐山: 华北理工大学, 2019. |
ZHAO Bin. Study on application of blast furnace gas bag dedusting technology[D]. Tangshan: North China University of Science and Technology, 2019. | |
16 | XU J, WANG N, CHEN M, et al. Comparative investigation on the reduction behavior of blast furnace dust particles during in-flight process in hydrogen-rich and carbon monoxide atmospheres[J]. Powder Technology, 2020, 366: 709-721. |
17 | Д Жембус M, 张国铭. 氮气在高炉鼓风时的应用[J]. 低温与特气, 1988, 6(2): 47-50. |
Жембус М Д, ZHANG Guoming. Application of nitrogen gas in blast furnace blowing [J]. Low Temperature and Specialty Gases, 1988, 6(2): 47-50. | |
18 | BÂ A, CESSOU A, MARCANO N, et al. Oxyfuel combustion and reactants preheating to enhance turbulent flame stabilization of low calorific blast furnace gas[J]. Fuel, 2019, 242: 211-221. |
19 | LIU L Z, JIANG Z Y, ZHANG X R, et al. Effects of top gas recycling on in-furnace status, productivity, and energy consumption of oxygen blast furnace[J]. Energy, 2018, 163: 144-150. |
20 | 秦民生, 张建良, 齐宝铭. 全氧鼓风高炉冶炼钒钛铁矿石的优越性[J]. 钢铁钒钛, 1991, 12(2): 1-6. |
QIN Minsheng, ZHANG Jianliang, QI Baoming. The advantage of smelting vanadium titanium iron ore with full oxygen blast furnace[J]. Iron Steel Vanadium Titanium, 1991, 12(2): 1-6. | |
21 | CHAI Y F, ZHANG J L, SHAO Q J, et al. Experiment research on pulverized coal combustion in the tuyere of oxygen blast furnace[J]. High Temperature Materials and Processes, 2019, 38(2019): 42-49. |
22 | 雷志亮. 氧气高炉工艺的探讨研究[D]. 沈阳: 东北大学, 2014. |
LEI Zhiliang. Theoretical exploration on oxygen blast furnace process[D]. Shenyang: Northeastern University, 2014. | |
23 | 钟章格, 池伟强, 黄智斌. 高炉煤气脉冲布袋除尘技术的应用[J]. 冶金能源, 2004, 23(2): 16-19. |
ZHONG Zhangge, CHI Weiqiang, HUANG Zhibin. Application of pulse-bag filters dust removal on the blast furnace gas purification system[J]. Energy for Metallurgical Industry, 2004, 23(2): 16-19. | |
24 | 李维国. 高炉煤气全干法除尘工艺技术[J]. 宝钢技术, 2004(6): 63-64. |
LI Weiguo. Dry dust removal technology of blast furnace gas[J]. Bao Steel Technology, 2004(6): 63-64. | |
25 | YIN J Q, HE Y R, LIU X C, et al. Visiting CH4 formation and C1+C1 couplings to tune CH4 selectivity on Fe surfaces[J]. Journal of Catalysis, 2019, 372: 217-225. |
26 | 谈付安. 高炉煤气含水量对煤气热值的影响[J]. 冶金动力, 2006, 25(4): 23-24. |
Tan Fu'an. Influence of moisture in blast furnace on gas calorific value[J]. Metallurgical Power, 2006, 25(4): 23-24. | |
27 | 兰臣臣, 张淑会, 武兵强, 等. 氯元素对高炉冶炼的影响分析及展望[J]. 钢铁研究学报, 2015, 27(10): 1-5. |
LAN Chenchen, ZHANG Shuhui, WU Bingqiang, et al. Effect analysis and prospect of chlorine in blast furnace[J]. Journal of Iron and Steel Research, 2015, 27(10): 1-5. | |
28 | SUN W Q, XU X D, ZHANG Y, et al. Chlorine corrosion of blast furnace gas pipelines: analysis from thermal perspective[J]. Journal of Mining and Metallurgy, Section B: Metallurgy, 2019, 55(2): 197-208. |
29 | 刘小杰. 氯在高炉内的反应行为研究[D]. 沈阳: 东北大学, 2015. |
LIU Xiaojie. Study on reaction behavior of chlorine in BF[D]. Shenyang: Northeastern University, 2015. | |
30 | 李寒旭. TGA-FTIR联合技术对煤燃烧过程中氯的析出特征研究[J]. 煤炭转化, 1996, 19(3): 40-50. |
LI Hanxu. The emission of chlorine during coal combustion by TGA-FTIR[J]. Coal Conversion, 1996, 19(3): 40-50. | |
31 | TSUBOUCHI N, MOCHIZUKI Y, WANG Y H, et al. Fate of the chlorine in coal in the heating process[J]. ISIJ International, 2018, 58(2): 227-235. |
32 | WANG Z H, JIANG M, NING P, et al. Thermodynamic modeling and gaseous pollution prediction of the yellow phosphorus production[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 12194-12202. |
33 | 宁坚, 靳虎, 王泽安, 等. 煤中氯的赋存与释放特性研究进展[J]. 煤炭学报, 2019, 44(9): 2886-2897. |
NING JIAN, JIN HU, WANG Ze’an, et al. Research advances on the occurrence and release characteristics of chlorine in coal[J]. Journal of China Coal Society, 2019, 44(9): 2886-2897. | |
34 | 舒保华, 徐国兴. 高炉煤气洗涤水中氰化物的来源[J]. 江西冶金, 1985, 5(6): 40-46. |
SHU Baohua, XU Guoxing. Source of cyanide in blast furnace gas washing water [J]. Jiangxi Metallurgy, 1985, 5(6): 40-46. | |
35 | BRÜGER A, FAFILEK G, RESTREPO B O J, et al. On the volatilisation and decomposition of cyanide contaminations from gold mining[J]. Science of the Total Environment, 2018, 627: 1167-1173. |
36 | 申岩峰, 王美君, HU Yong-feng, 等. 高硫炼焦煤化学结构及硫赋存形态对硫热变迁的影响[J]. 燃料化学学报, 2020, 48(2): 144-153. |
SHEN Yanfeng, WANG Meijun, HU Yong-feng, et al. Effect of chemical structure and sulfur speciation of high-sulfur coking coals on sulfur transformation during pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 144-153. | |
37 | 张文成, 张小勇, 郑明东. 冶金焦炭硫形态及其对高炉煤气硫的影响[J]. 冶金能源, 2019, 38(2): 55-59. |
ZHANG Wencheng, ZHANG Xiaoyong, ZHENG Mingdong. Sulfur form of metallurgical coke influence on sulfur in blast furnace gas[J]. Energy for Metallurgical Industry, 2019, 38(2): 55-59. | |
38 | 郭玉华. 高炉煤气净化提质利用技术现状及未来发展趋势[J]. 钢铁研究学报, 2020, 32(7): 525-531. |
GUO Yuhua. Current station and tendency of purification and upgrading of blast furnace gas[J]. Journal of Iron and Steel Research, 2020, 32(7): 525-531. | |
39 | YASIPOURTEHRANI S, TIAN S C, STREZOV V, et al. Development of robust CaO-based sorbents from blast furnace slag for calcium looping CO2 capture[J]. Chemical Engineering Journal, 2020, 387: 124140. |
40 | 孙加亮, 杨伟明, 杜雄伟. 高炉煤气脱硫现状及技术路线分析[J]. 冶金动力, 2020, 39(10): 13-18. |
SUN Jialiang, YANG Weiming, DU Xiongwei. Present situation and technical route analysis of blast furnace gas desulfurization[J]. Metallurgical Power, 2020, 39(10): 13-18. | |
41 | 袁涌天, 尹燕华, 周旭, 等. CO、CO2及其共存体系的甲烷化反应[J]. 化工进展, 2014, 33(S1): 173-180. |
YUAN Yongtian, YIN Yanhua, ZHOU Xu, et al. Methanation of thoree different reaction systems of carbon oxides[J]. Chemical Industry and Engineering Progress, 2014, 33(S1): 173-180. | |
42 | GLARBORG P, MARSHALL P. Oxidation of reduced sulfur species: carbonyl sulfide[J]. International Journal of Chemical Kinetics, 2013, 45(7): 429-439. |
43 | ABIÁN M, CEBRIÁN M, MILLERA Á, et al. CS2 and COS conversion under different combustion conditions[J]. Combustion and Flame, 2015, 162(5): 2119-2127. |
44 | GUO F, LI S, HOU Y, et al. Metalated carbon nitrides as base catalysts for efficient catalytic hydrolysis of carbonyl sulfide[J]. Chemical Communications, 2019, 55(75): 11259-11262. |
45 | 刘俊锋, 刘永春, 薛莉, 等. Al2O3上羰基硫常温催化水解的氧中毒机理[J]. 物理化学学报, 2007, 23(7): 997-1002. |
LIU Junfeng, LIU Yongchun, XUE Li, et al. Oxygen poisoning mechanism of catalytic hydrolysis of OCS over Al2O3 at room temperature[J]. Acta Physico-Chimica Sinica, 2007, 23(7): 997-1002. | |
46 | 刘娜, 宁平, 李凯, 等. HCN、COS和CS2催化水解及其水解产物协同净化的研究进展[J]. 化工进展, 2018, 37(1): 301-310. |
LIU Na, NING Ping, LI Kai, et al. Research progress in catalytic hydrolysis of HCN, COS and CS2 and synergetic purification of hydrolysates[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 301-310. | |
47 | 易红宏, 赵顺征, 唐晓龙. 羰基硫低温催化水解技术[M]. 北京: 科学出版社, 2014. |
YI Honghong, ZHAO Shunzheng, TANG Xiaolong. Technology of COS catalytic hydrolysis under low temperature [M]. Beijing: Science Press, 2014. | |
48 | 梁美生, 李春虎, 郭汉贤, 等. 红外光谱法对COS水解催化剂氧中毒行为的研究[J]. 燃料化学学报, 2002, 30(4): 347-352. |
LIANG Meisheng, LI Chunhu, GUO Hanxian, et al. Ftir study on oxygen poisoning behavior of Cos hydrolysis catalyst[J]. Journal of Fuel Chemistry and Technology, 2002, 30(4): 347-352. | |
49 | XU Y K, JU S G, WANG Z X, et al. The study of the preparation of catalysts for carbonyl sulfide hydrolysis under moderate temperature[J]. Journal of Materials Science and Chemical Engineering, 2018, 6(4): 31-38. |
50 | SUN Z, LIU J P, SUN Z Q. Synergistic decarbonization and desulfurization of blast furnace gas via a novel magnesium-molybdenum looping process[J]. Fuel, 2020, 279: 118418. |
51 | 刘艳霞, 上官炬, 王泽鑫, 等. TiO2改性γ-Al2O3基催化剂的中温水解羰基硫活性[J]. 化工进展, 2018, 37(10): 3885-3894. |
LIU Yanxia, SHANGGUAN Ju, WANG Zexin, et al. Moderate temperature COS hydrolysis activity of γ-Al2O3 based catalyst modified by TiO2[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3885-3894. | |
52 | WANG X Q, MA Y X, NING P, et al. Adsorption of carbonyl sulfide on modified activated carbon under low-oxygen content conditions[J]. Adsorption, 2014, 20(4): 623-630. |
53 | WANG X Q, QIU J, NING P, et al. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions[J]. Journal of Hazardous Materials, 2012, 229/230: 128-136. |
54 | BACHELIER J, ABOULAYT A, LAVALLEY J C, et al. Activity of different metal oxides towards COS hydrolysis. Effect of SO2 and sulfation[J]. Catalysis Today, 1993, 17(1/2): 55-62. |
55 | CORTÉS-ARRIAGADA D, VILLEGAS-ESCOBAR N, ORTEGA D E. Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and H2S), and the co-adsorption in O2 environments[J]. Applied Surface Science, 2018, 427: 227-236. |
56 | JOSHI J N, ZHU G H, LEE J J, et al. Probing metal–organic framework design for adsorptive natural gas purification[J]. Langmuir, 2018, 34(29): 8443-8450. |
57 | 谢巍, 常丽萍, 余江龙, 等. 煤气净化中H2S干法脱除的研究进展[J]. 化工学报, 2006, 57(9): 2012-2020. |
XIE Wei, CHANG Liping, YU Jianglong, et al. Research progress of removal of H2S from coal gas by dry method[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(9): 2012-2020. | |
58 | BANDOSZ T J. On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures[J]. Journal of Colloid and Interface Science, 2002, 246(1): 1-20. |
59 | GARDNER T H, BERRY D A, DAVID LYONS K, et al. Fuel processor integrated H2S catalytic partial oxidation technology for sulfur removal in fuel cell power plants[J]. Fuel, 2002, 81(17): 2157-2166. |
60 | WU X X, SCHWARTZ V, OVERBURY S H, et al. Desulfurization of gaseous fuels using activated carbons as catalysts for the selective oxidation of hydrogen sulfide[J]. Energy & Fuels, 2005, 19(5): 1774-1782. |
61 | HANDY H, SANTOSO A, WIDODO A, et al. H2S-CO2 separation using room temperature ionic liquid [BMIM][Br][J]. Separation Science and Technology, 2014, 49(13): 2079-2084. |
[1] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[2] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[3] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[4] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[5] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[6] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[7] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[8] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[9] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[10] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[11] | 邓建, 王凯, 骆广生. 面向硝基化学品安全生产的绝热连续微反应技术发展及思考[J]. 化工进展, 2023, 42(8): 3923-3925. |
[12] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[13] | 吕程远, 张函, 杨明旺, 杜健军, 樊江莉. 生物成像用二氧杂环丁烷余辉发光体系的研究进展[J]. 化工进展, 2023, 42(8): 4108-4122. |
[14] | 王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[15] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |