[1] PRAKASH B, JOTHIRAJAN M A, UMAPATHY S, et al. Synthesis and characterization of biodegradable ultrasonicated films made from chitosan/Al2O3 polymer nanocomposites[J]. Phys. Procedia., 2013, 49:84-91.
[2] OCANDO C, TERCGAK A, MONDRAGON I. Surfactant addition effects on dispersion and microdomain orientation in SBS triblock copolymer/alumina nanoparticle composites[J]. European Polymer Journal, 2011, 47:1240-1249.
[3] SURI K, ANNAPOOR S, TANDON R P, et al. Nanocomposite of polypyrrole-iron oxide by simultaneous gelation and poly-merization[J]. Synth. Metals, 2002, 126:137.
[4] HUGUENINF, GIROTTO E M, TORRESI R M, et al. Transport properties of V2O5/polypyrrole nanocomposite prepared by a sol-gel alkoxide route[J]. J. Electroanal. Chem., 2002, 536(1):37-45.
[5] WIESE H, LEUNIGER J, TIARKS F, et al. Nanocomposite dispersion-an innovation in waterbased coating[J]. Pitture e Vernici Europe, 2006, 82:213-221.
[6] SIAVASH T, MUHAMMAD S, ZOHREH A, et al. A molecular dynamics simulation to investigate the thermal properties of SWCNT/poly(phenylenesulfone) nanocomposites[J]. Int. Nano Lett., 2014, 4:112-115.
[7] ZHANG J, LOU J Z, SHAMSUDDIN I, et al. Thermal properties of poly (lactic acid) fumed silica nanocomposites:experiments and molecular dynamics simulations[J]. Polymer, 2008, 49:2381-2386.
[8] SEUNGHWA Y, MAENGHYO C, ZOHREH A, et al. Scale bridging method to characterize mechanical properties of nanoparticle/polymer nanocomposites[J]. Applied Physics Letters, 2008, 93:043111-043113.
[9] WENG C J, CHEN Y L, CHEN C M, et al. Preparation of gold decorated SiO2@polyaniline core-shell microspheres and application as a sensor for ascorbic acid[J]. Electrochimica Acta, 2013, 95:162-169.
[10] SHIN H, CHANG S, YANG S, et al. Statistical multiscale homogenization approach for analyzing polymer nanocomposites that include model inherent uncertainties of molecular dynamics simulations[J]. Composites Part B, 2016, 87:120-131.
[11] FANG J C, ZHANG X, HE L, et al. Experimental research of hydroquinone (HQ)/hexamethylene tetramine (HMTA) gel for water plugging treatments in high-temperature and high-salinity reservoirs[J]. Journal of Applied Polymer Science, 2017, 134(1). DOI.org/10.1002/app.44359.
[12] WANG Y, WANG W H, ZHANG Z Q, et al. Study of the glass transition temperature and the mechanical properties of PET/modified silica nanocomposite by molecular dynamics simulation[J]. European Polymer Journal, 2016, 75:36-45.
[13] YANG S, CHOI J, CHO M. Elastic stiffness and filler size effect of covalently grafted nanosilica polyimide composites:molecular dynamics study[J]. ACS Applied Materials & Interfaces, 2012, 4(9):4792-4799.
[14] NDORO T V M, VOYIATZIS E, GHANBARI A, et al. Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix:atomistic molecular dynamics simulations[J]. Macromolecules, 2011, 44(7):2316-2327.
[15] ESLAMI H, RAHIMI M, MULLERPLATHE F Y. Molecular dynamics simulation of a silica nanoparticle in oligomeric poly (methyl methacrylate):a model system for studying the interphase thickness in a polymer-nanocomposite via different properties[J]. Macromolecules, 2013, 46(21):8680-8692.
[16] BENJAMIN J C, MOHAMED S E. Estimates of point defect production in α-quartz using molecular dynamics simulations[J]. Modelling and Simulation in Materials Science and Engineering, 2015, 25(5):055001.
[17] LU H F, ZHOU Z P, HAO T F, et al. Temperature dependence of structural properties and chain configurational study:a molecular dynamics simulation of polyethylene chains[J]. Macromol.Theory Simul., 2015, 24:335-343.
[18] YANG S R, QU J M. Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations[J]. Polymer, 2012, 53:4806-4817.
[19] YAROVSKY I, EVANS E. Computer simulation of structure and properties of crosslinked polymers:application to epoxy resins[J]. Polymer, 2002, 43:963-969.
[20] BUNTEAND S W, SUN H. Molecular modeling of energetic materials:the parameterization and validation of nitrateesters in the COMPASS force field[J]. Phys. Chem. B, 2000, 104:2477-2480.
[21] LI C L, ZHANG T T, JI X J, et al. Effect of Ca2+/Mg2+ on the stability of the foam system stabilized by an anionic surfactant:a molecular dynamics study[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2016, 489:423-432.
[22] MAPLE J R, DINUR U, HAGLER A T. Derivation of forcefields for molecular mechanics and dynamics from ab initio energy surfaces[J]. Proc. Natl. Acad. Sci. USA, 1988, 85, 5350-5354.
[23] ALLEN M P. Computer simulation of liquids[M]. Tildesley D J. Oxford:Clarendon Press, 1987:78-82.
[24] KARASAWA N, GODDARD W A. Force fields, structures, and properties of poly (vinylidene fluoride) crystals[J]. Macromolecules, 1992, 25(26):7268-7272.
[25] EWALD P P. Evaluation of optical and electrostatic lattice potentials[J]. Annalender Physik, 1921, 369(3):253-255.
[26] ALI S, BEHROUZ A. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers:molecular dynamics simulation[J]. J. Mol. Model., 2013, 19:3719-3731.
[27] DAI S S, ZHANG J J, ZHANG T L, et al. Molecular dynamic simulations of the core-shell microsphere of nanosilica grafted by acrylamide acrylic acid copolymer PAMAA:study of its microstructure and interaction between microsphere and additives[J]. New J. Chem., 2016,40(6):5143-5151.
[28] YANG P Y, JU S P, HUANG S M. Predicted structural and mechanical properties of activated carbon by molecular simulation[J]. Computational Materials Science, 2015, 143:43-54.
[29] RADOVAN T, ALESSANDRO C, MARCOA F. Computer simulation of polypropylene/organoclay nanocomposites:characterization of atomic scale structure and prediction of binding energy[J]. Polymer, 2004, 45(23):8075-8083.
[30] QIU L, XIAO H M. Molecular dynamics study of binding energies,mechanical properties, and detonation performances of bicycle HMX-based PBXs[J]. Journal of Hazardous Materials, 2009, 164(1):329-336.
[31] ZHU W, XIAO J J, ZHU W H, et al. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives[J]. Journal of Hazardous Materials, 2009, 164(2/3):1082-1088.
[32] ANDREA P, SIMONE T, GIOVANNI G, et al. Mechanical and thermal properties of graphene random nanofoams via molecular dynamics simulations[J]. Carbon, 2015, 132:766-775.
[33] PETTIFOR D, MATER G. Theoretical predictions of structure and related properties of intermetallics[J]. Sci. Technol., 1992, 8:345. |