[1] LLORACH-MASSANA P, PENA J, RIERADEVALL J, et al. Analysis of the technical, environmental and economic potential of phase change materials (PCM) for root zone heating in mediterranean greenhouses[J]. Renewable Energy, 2016,179:601-608.
[2] 武卫东, 唐恒博, 苗朋柯,等. 空调用纳米有机复合相变蓄冷材料制备与热物性[J]. 化工学报, 2015, 66(3):1208-1214. WU W D, TANG H B, MIAO P K, et al. Preparation and the rmal properties of nano-organic composite phase change materials for cool storage in air-conditioning[J]. CIESC J., 2015, 66(3):1208-1214.
[3] 谢望平, 汪南, 朱冬生,等. 相变材料强化传热研究进展[J]. 化工进展, 2008, 27(2):190-195. XIE W P, WANG N, ZHU D S, et al. Review of heat transfer enhancement of the PCMs[J]. Chemical Industry and Engineering Progress, 2008, 27(2):190-195.
[4] WANG T Y, WANG S F, GENG L X, et al. Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network[J]. Applied Energy, 2016, 179:601-608.
[5] LIN C P, RAO Z H. Thermal conductivity enhancement of paraffin by adding boron nitride nanostructures:a molecular dynamics study[J]. Applied Thermal Engineering, 2017, 110:1411-1419.
[6] CHEN J Q, YANG D H, JIANG J H, et al. Research progress of phase change materials (PCMs) embedded with metal foam (a review)[J]. Procedia Materials Science, 2014, 4:389-394.
[7] 盛强, 邢玉明, 王泽. 泡沫金属复合相变材料的制备与性能分析[J]. 化工学报, 2013, 64(10):3565-3570. SHENG Q, XING Y M, WANG Z. Preparation and performance analysis of metal foam composite phase change material[J]. CIESC J., 2013, 64(10):3565-3570.
[8] SUNDARRAM S S, LI W. The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams[J]. Applied Thermal Engineering, 2014, 64(1/2):147-154.
[9] YANG J L, YANG L J, XU C, et al. Numerical analysis on thermal behavior of solid-liquid phase change within copper foam with varying porosity[J]. International Journal of Heat and Mass Transfer, 2015, 84:1008-1018.
[10] DI GIORGIO P, IASIELLO M, VIGLIONE A, et al. Numerical analysis of a paraffin/metal foam composite for thermal storage[J]. Journal of Physics:Conference Series. IOP Publishing, 2017, 796(1):012032.
[11] FENG S S, SHI M, LI Y F, et al. Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam[J]. Int. J. Heat Mass Tran., 2015, 90:838-847.
[12] 杲东彦, 陈振乾, 孙东科, 等. 泡沫金属内相变材料融化的格子Boltzmann方法孔隙尺度模拟研究[J]. 工程热物理学报, 2016, 37(2):385-389. GAO D Y, CHEN Z Q, SUN D K, et al. Lattice Boltzmann simulation of melting of phase change materials in metal foams at pore scale[J]. J. Eng. Thermophys-Rus., 2016, 37(2):385-389.
[13] 郁伯铭. 多孔介质输运性质的分形分析研究进展[J]. 力学进展, 2003, 33(3):333-346. YU B M. Advances of fractal analysis of transport properties for porous media[J]. Advances in Mechanics, 2003, 33(3):333-346.
[14] WEI W, CAI J C, HU X Y, et al. A numerical study on fractal dimensions of current streamlines in two-dimensional and three-dimensional pore fractal models of porous media[J]. Fractals, 2015, 23(1):1540012.
[15] XU P, LI C H, QIU S X, et al. A fractal network model for fractured porous media[J]. Fractals, 2016, 24(2):1650018.
[16] DENG Z L, LIU X D, ZHANG C B, et al. Melting behaviors of PCM in porous metal foam characterized by fractal geometry[J]. Int. J. Heat Mass Tran., 2017, 113:1031-1042.
[17] ZHANG C B, WU L Y, CHEN Y P. Study on solidification of phase change material in fractal porous metal foam[J]. Fractals, 2015, 23(1):1540003. |