Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 867-878.DOI: 10.16085/j.issn.1000-6613.2024-0160
• Industrial catalysis • Previous Articles Next Articles
LI Xiaoqian(
), REN Shenyong(
), LIU Lu, YANG Chi, SHEN Baojian, XU Chunming
Received:2024-01-19
Revised:2024-04-01
Online:2025-03-10
Published:2025-02-25
Contact:
REN Shenyong
李晓倩(
), 任申勇(
), 刘璐, 杨驰, 申宝剑, 徐春明
通讯作者:
任申勇
作者简介:李晓倩(1996—),女,博士研究生,研究方向为新材料与催化剂工程。E-mail:2020086928@qq.com。
基金资助:CLC Number:
LI Xiaoqian, REN Shenyong, LIU Lu, YANG Chi, SHEN Baojian, XU Chunming. Modulation of NiMo-based catalysts by Fe species and its effect on catalytic hydrodesulfurization performance[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 867-878.
李晓倩, 任申勇, 刘璐, 杨驰, 申宝剑, 徐春明. Fe物种对NiMo基催化剂的调控及加氢脱硫性能的影响[J]. 化工进展, 2025, 44(2): 867-878.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0160
| 样品 | 相对 结晶度/% | Fe2O3质量 分数/% | BET比表面积 /m2·g-1 | 微孔比表面积 /m2·g-1 | 介孔比表面积 /m2·g-1 | 总孔体积 /cm3·g-1 | 微孔体积 /cm3·g-1 | 介孔体积 /cm3·g-1 |
|---|---|---|---|---|---|---|---|---|
| USY | 84 | — | 586 | 509 | 77 | 0.39 | 0.249 | 0.141 |
| 0.02MFe-Y | 64 | 4.28 | 564 | 455 | 109 | 0.392 | 0.222 | 0.170 |
| 0.06MFe-Y | 47 | 11.01 | 603 | 469 | 134 | 0.464 | 0.229 | 0.235 |
| 0.12MFe-Y | 52 | 9.46 | 613 | 467 | 146 | 0.448 | 0.223 | 0.225 |
| 样品 | 相对 结晶度/% | Fe2O3质量 分数/% | BET比表面积 /m2·g-1 | 微孔比表面积 /m2·g-1 | 介孔比表面积 /m2·g-1 | 总孔体积 /cm3·g-1 | 微孔体积 /cm3·g-1 | 介孔体积 /cm3·g-1 |
|---|---|---|---|---|---|---|---|---|
| USY | 84 | — | 586 | 509 | 77 | 0.39 | 0.249 | 0.141 |
| 0.02MFe-Y | 64 | 4.28 | 564 | 455 | 109 | 0.392 | 0.222 | 0.170 |
| 0.06MFe-Y | 47 | 11.01 | 603 | 469 | 134 | 0.464 | 0.229 | 0.235 |
| 0.12MFe-Y | 52 | 9.46 | 613 | 467 | 146 | 0.448 | 0.223 | 0.225 |
| 样品 | 弱酸位点/µmol·g-1 | 强酸位点/µmol·g-1 | 总酸位点/µmol·g-1 | ||||
|---|---|---|---|---|---|---|---|
| B | L | B+L | B | L | B+L | ||
| USY | 88 | 177 | 265 | 74 | 92 | 166 | 431 |
| 0.02MFe-Y | 125 | 97 | 222 | 101 | 106 | 207 | 429 |
| 0.06MFe-Y | 124 | 126 | 250 | 93 | 101 | 194 | 444 |
| 0.12MFe-Y | 79 | 105 | 184 | 43 | 166 | 209 | 393 |
| 样品 | 弱酸位点/µmol·g-1 | 强酸位点/µmol·g-1 | 总酸位点/µmol·g-1 | ||||
|---|---|---|---|---|---|---|---|
| B | L | B+L | B | L | B+L | ||
| USY | 88 | 177 | 265 | 74 | 92 | 166 | 431 |
| 0.02MFe-Y | 125 | 97 | 222 | 101 | 106 | 207 | 429 |
| 0.06MFe-Y | 124 | 126 | 250 | 93 | 101 | 194 | 444 |
| 0.12MFe-Y | 79 | 105 | 184 | 43 | 166 | 209 | 393 |
| 催化剂 | 平均片晶长度/nm | 平均堆垛层数 | fMo |
|---|---|---|---|
| NiMo/USY | 2.93 | 1.97 | 0.32 |
| NiMo/0.02MFe-Y | 3.31 | 2.02 | 0.31 |
| NiMo/0.06MFe-Y | 2.68 | 2.86 | 0.35 |
| NiMo/0.12MFe-Y | 2.42 | 3.42 | 0.39 |
| 催化剂 | 平均片晶长度/nm | 平均堆垛层数 | fMo |
|---|---|---|---|
| NiMo/USY | 2.93 | 1.97 | 0.32 |
| NiMo/0.02MFe-Y | 3.31 | 2.02 | 0.31 |
| NiMo/0.06MFe-Y | 2.68 | 2.86 | 0.35 |
| NiMo/0.12MFe-Y | 2.42 | 3.42 | 0.39 |
| 催化剂 | Mo硫化度①/% | Ni硫化度②/% | NiS x /% | NiMoS/% | Ni2+/% |
|---|---|---|---|---|---|
| NiMo/USY | 84.3 | 57.7 | 32.9 | 24.8 | 42.3 |
| NiMo/0.02MFe-Y | 81.8 | 56.2 | 31.6 | 24.7 | 43.7 |
| NiMo/0.06MFe-Y | 87.7 | 61.5 | 32.8 | 28.7 | 38.5 |
| NiMo/0.12MFe-Y | 88.1 | 62.5 | 33.7 | 28.9 | 37.5 |
| 催化剂 | Mo硫化度①/% | Ni硫化度②/% | NiS x /% | NiMoS/% | Ni2+/% |
|---|---|---|---|---|---|
| NiMo/USY | 84.3 | 57.7 | 32.9 | 24.8 | 42.3 |
| NiMo/0.02MFe-Y | 81.8 | 56.2 | 31.6 | 24.7 | 43.7 |
| NiMo/0.06MFe-Y | 87.7 | 61.5 | 32.8 | 28.7 | 38.5 |
| NiMo/0.12MFe-Y | 88.1 | 62.5 | 33.7 | 28.9 | 37.5 |
| 样品 | BP/% | THDBT+HHDBT/% | CHB/% | BCH/% | kHDS/mol·g-1·s-1 | TOF/s-1 | DDS选择性 | HYD选择性 | HYD/DDS |
|---|---|---|---|---|---|---|---|---|---|
| NiMo/USY | 42.6 | 46.3 | 7.9 | 3.2 | 3.25×10-8 | 7.93×10-5 | 0.43 | 0.57 | 1.33 |
| NiMo/0.02MFe-Y | 32.5 | 60.5 | 5.1 | 1.9 | 2.91×10-8 | 7.43×10-5 | 0.33 | 0.67 | 2.03 |
| NiMo/0.06MFe-Y | 48.3 | 36.9 | 6.8 | 8.0 | 3.61×10-8 | 7.94×10-5 | 0.48 | 0.52 | 1.08 |
| NiMo/0.12MFe-Y | 51.1 | 35.5 | 4.0 | 9.4 | 5.86×10-8 | 10.0×10-5 | 0.51 | 0.49 | 0.96 |
| 样品 | BP/% | THDBT+HHDBT/% | CHB/% | BCH/% | kHDS/mol·g-1·s-1 | TOF/s-1 | DDS选择性 | HYD选择性 | HYD/DDS |
|---|---|---|---|---|---|---|---|---|---|
| NiMo/USY | 42.6 | 46.3 | 7.9 | 3.2 | 3.25×10-8 | 7.93×10-5 | 0.43 | 0.57 | 1.33 |
| NiMo/0.02MFe-Y | 32.5 | 60.5 | 5.1 | 1.9 | 2.91×10-8 | 7.43×10-5 | 0.33 | 0.67 | 2.03 |
| NiMo/0.06MFe-Y | 48.3 | 36.9 | 6.8 | 8.0 | 3.61×10-8 | 7.94×10-5 | 0.48 | 0.52 | 1.08 |
| NiMo/0.12MFe-Y | 51.1 | 35.5 | 4.0 | 9.4 | 5.86×10-8 | 10.0×10-5 | 0.51 | 0.49 | 0.96 |
| 1 | 周红军, 周颖, 徐春明. 中国碳达峰碳中和目标下炼化一体化新路径与实践[J]. 化工进展, 2022, 41(4): 2226-2230. |
| ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of refining and chemical integration under China’s dual-carbon target[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2226-2230. | |
| 2 | WEISE Christian Frederik, FALSIG Hanne, MOSES Poul Georg, et al. Single-atom Pt promotion of industrial Co-Mo-S catalysts for ultra-deep hydrodesulfurization[J]. Journal of Catalysis, 2021, 403: 74-86. |
| 3 | WENG Xiaoyi, CAO Liyuan, ZHANG Guohao, et al. Ultradeep hydrodesulfurization of diesel: Mechanisms, catalyst design strategies, and challenges[J]. Industrial & Engineering Chemistry Research, 2020, 59(49): 21261-21274. |
| 4 | XU Zhusong, WANG Haoze, KANG Huanqi, et al. Effect of organic phosphorus addition on the state of active metal species and catalytic performance of NiW/Al2O3 hydrodesulfurization catalyst[J]. Fuel, 2023, 340: 127547. |
| 5 | ZHANG Ge, YANG Fan, XU Zhusong, et al. Electronic structure regulation of CoMoS catalysts by N, P co-doped carbon modification for effective hydrodesulfurization[J]. Fuel, 2022, 322: 124160. |
| 6 | 梁吉雷, 吴雯洁, 吴萌萌, 等. 绿色合成介孔碳负载(Ni)MoS2加氢脱硫催化剂[J]. 燃料化学学报(中英文), 2023, 51(12): 1761-1771. |
| LIANG Jilei, WU Wenjie, WU Mengmeng, et al. Green synthesis of mesoporous carbon supported (Ni)MoS2 as efficient hydrodesulfurization catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1761-1771. | |
| 7 | 张晶, 李翔, 孟利红, 等. Pd在MCM-41中的分布对二苯并噻吩加氢脱硫反应动力学的影响[J]. 石油学报(石油加工), 2023, 39(4): 791-798. |
| ZHANG Jing, LI Xiang, MENG Lihong, et al. Effect of distribution of Pd in MCM-41 on the kinetics of hydrodesulfurization of dibenzothiophene[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(4): 791-798. | |
| 8 | SUN Houxiang, SUN Huayang, ZHANG Xinyue, et al. Effect of divalent tin on the SnSAPO-5 molecular sieve and its modulation to alumina support to form a highly efficient NiW catalyst for deep hydrodesulfurization of 4,6-dimethyldibenzothiophene[J]. ACS Catalysis, 2019, 9(8): 6613-6623. |
| 9 | MEI Jinlin, SHI Yu, XIAO Chengkun, et al. Hierarchically porous Beta/SBA-16 with different silica-alumina ratios and the hydrodesulfurization performances of DBT and 4,6-DMDBT[J]. Petroleum Science, 2022, 19(1): 375-386. |
| 10 | KANG Xin, LIU Jiancong, TIAN Chungui, et al. Surface curvature-confined strategy to ultrasmall nickel-molybdenum sulfide nanoflakes for highly efficient deep hydrodesulfurization[J]. Nano Research, 2020, 13(3): 882-890. |
| 11 | MÉNDEZ Franklin J, VARGAS Roylena, BLANCO Joel, et al. Titanium-modified MCM-41 molecular sieves as efficient supports to increase the hydrogenation abilities of NiMoS and CoMoS catalysts[J]. Journal of Industrial and Engineering Chemistry, 2021, 95: 340-349. |
| 12 | ZHANG Lei, DAI Quan, FU Wenqian, et al. CoMo catalyst on zeolite TS-1 nanorod assemblies with high activity in the hydrodesulfurization of 4,6-dimethyldibenzothiophene[J]. Journal of Catalysis, 2018, 359: 130-142. |
| 13 | YANG Yu, MANDIZADEH Samira, ZHANG Hao, et al. The role of ZnO in reactive desulfurization of diesel over ZnO@Zeolite Y: Classification, preparation, and evaluation[J]. Separation and Purification Technology, 2021, 256: 117784. |
| 14 | FU Wenqian, ZHANG Lei, TANG Tiandi, et al. Extraordinarily high activity in the hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pd supported on mesoporous zeolite Y[J]. Journal of the American Chemical Society, 2011, 133(39): 15346-15349. |
| 15 | 苗杰, 李双, 迟姚玲, 等. nMoO x ·USY加氢脱硫性能的研究[J]. 石油化工, 2019, 48(9): 892-898. |
| MIAO Jie, LI Shuang, CHI Yaoling, et al. An investigation on the hydrodesulrization performance of nMoO x ·USY[J]. Petrochemical Technology, 2019, 48(9): 892-898. | |
| 16 | ZHOU Wenwu, WEI Qiang, ZHOU Yasong, et al. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo sulfide catalysts supported on meso-microporous Y zeolite with different mesopore sizes[J]. Applied Catalysis B: Environmental, 2018, 238: 212-224. |
| 17 | SALEH Tawfik A, SULAIMAN Kazeem O, AL-HAMMADI Saddam A. Effect of carbon on the hydrodesulfurization activity of MoCo catalysts supported on zeolite/active carbon hybrid supports[J]. Applied Catalysis B: Environmental, 2020, 263: 117661. |
| 18 | 李双, 贺友, 黄傲寒, 等. 柠檬酸预处理对nMoO x ·USY加氢脱硫性能的影响[J]. 石油化工, 2021, 50(10): 1013-1018. |
| LI Shuang, HE You, HUANG Aohan, et al. Effect of citric acid pretreatment on hydrodesulfurization performance of nMoO x ·USY catalyst[J]. Petrochemical Technology, 2021, 50(10): 1013-1018. | |
| 19 | DONG Yanzeng, YU Xiaohang, WANG Zhiheng, et al. Effects of HY addition on NiMoS active phase of NiMo(NH3) impregnated NiMo/Al2O3-HY and its role in 4,6-dimethyl-dibenzothiophene hydrodesulfurization[J]. Journal of Industrial and Engineering Chemistry, 2023, 117: 172-187. |
| 20 | KARAMI Hamid, KAZEMEINI Mohammad, SOLTANALI Saeed, et al. Influence of adding a modified zeolite-Y onto the NiMo/Al2O3 catalyst utilized to produce a diesel fuel with highly reduced sulfur content[J]. Microporous and Mesoporous Materials, 2022, 332: 111704. |
| 21 | ZHOU Wenwu, ZHOU Anning, ZHANG Yating, et al. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo supported on Ga-modified Y zeolites catalysts[J]. Journal of Catalysis, 2019, 374: 345-359. |
| 22 | SUN Houxiang, LI Lei, ZHANG Huabing, et al. Effect of zirconium modified Y zeolite via in situ synthesis and its regulation on the formation of excellent NiW catalyst for ultra-deep hydrodesulfurization of 4,6-DMDBT[J]. Chemical Engineering Journal, 2023, 478: 147514. |
| 23 | WANG Yandan, SHEN Baojian, LI Jiangcheng, et al. Interaction of coupled titanium and phosphorous on USY to tune hydrodesulfurization of 4,6-DMDBT and FCC LCO over NiW catalyst[J]. Fuel Processing Technology, 2014, 128: 166-175. |
| 24 | LI Lei, WANG Minjian, HUANG Lingxiang, et al. Electron-donating-accepting behavior between nitrogen-doped carbon materials and Fe species and its promotion for DBT hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2019, 254: 360-370. |
| 25 | 马明超, 臧甲忠, 于海斌, 等. 金属改性对多环芳烃选择性开环Pt/Beta催化剂性能的影响[J]. 化工进展, 2021, 40(11): 6113-6120. |
| MA Mingchao, ZANG Jiazhong, YU Haibin, et al. Effects of metal modification on the performance of Pt/Beta catalysts for selective ring opening of polycyclic aromatics[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6113-6120. | |
| 26 | LI Yushan, XIE Qingqing, WANG Mengyu, et al. Fe3+ and chlorotrimethylsilane modified NaY catalysts display enhanced activity and durability for acetalization of glycerol to solketal[J]. Chemical Engineering Journal, 2023, 452: 139303. |
| 27 | AL-KHATTAF S. Catalytic transformation of toluene over a high-acidity Y-zeolite based catalyst[J]. Energy & Fuels, 2006, 20(3): 946-954. |
| 28 | LIU Xuandong, LIU Jinjia, LI Lei, et al. Preparation of electron-rich Fe-based catalyst via electronic structure regulation and its promotion to hydrodesulfurization of dibenzothiophene[J]. Applied Catalysis B: Environmental, 2020, 269: 118779. |
| 29 | ZHOU Wenwu, ZHANG Qing, ZHOU Yasong, et al. Effects of Ga- and P-modified USY-based NiMoS catalysts on ultra-deep hydrodesulfurization for FCC diesels[J]. Catalysis Today, 2018, 305: 171-181. |
| 30 | 周文武, 韩峙宇, 陈治平, 等. 多级孔NiMo负载TS-1分子筛催化剂的制备及其加氢脱硫性能[J]. 无机化学学报, 2023, 39(5): 891-905. |
| ZHOU Wenwu, HAN Shiyu, CHEN Zhiping, et al. Hierarchical TS-1 zeolite loaded with NiMo catalysts: Preparation and performance in hydrodesulfurization[J]. Chinese Journal of Inorganic Chemistry, 2023, 39(5): 891-905. | |
| 31 | WANG Baishuai, LI Xiangcheng, CHEN Pingan, et al. Effect of Mo addition on the microstructure and catalytic performance Fe-Mo catalyst[J]. Journal of Alloys and Compounds, 2019, 786: 440-448. |
| 32 | 赵瑞玉, 曹东炜, 曾令有, 等. 助剂Ni与载体的相互作用及其对NiMo/γ-Al2O3催化剂加氢脱硫性能的影响[J]. 燃料化学学报, 2016, 44(5): 564-569. |
| ZHAO Ruiyu, CAO Dongwei, ZENG Lingyou, et al. Interaction between Ni promoter and Al2O3 support and its effect on the performance of NiMo/γ-Al2O3 catalyst in hydrodesulphurization[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 564-569. |
| [1] | SU Liangjian, XIAO Junyan, ZHANG Chunguang, ZHAO Yuansheng, YANG Xu. Deep regeneration of fixed-bed HDCCR catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 728-734. |
| [2] | LI Zhuoyu, YU Meiqi, CHEN Xiaoyan, HU Ruohui, WANG Qinghong, CHEN Chunmao, ZHAN Yali. Effects and mechanism on the removal of nitrobenzene from water by adsorption of refining waste catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1076-1087. |
| [3] | LIU Fazhi, ZHANG Pengwei, LIU Tao, XIE Yuxian, HE Jianle, SU Sheng, XU Jun, XIANG Jun. Mechanism of anti-CO poisoning of Sb-modified vanadium-titanium SCR denitrification catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1129-1137. |
| [4] | ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, FENG Bo, JIANG Zhihui, LYU Yijun, MEN Zhuowu. Advances in Co-based catalysts for syngas to higher alcohol [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 773-787. |
| [5] | JIA Yijing, TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong. Research progress on iron-based catalysts for CO2 hydrogenation to low carbon olefins [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 820-833. |
| [6] | LIAO Xu, WANG Wei, HUANG Wenting, XIONG Wentao, WANG Zeyu, QIN Zuodong, LIN Jinqing. Research progress in biomass-based catalysts in the conversion of carbon dioxide into cyclic carbonates [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 834-846. |
| [7] | HONG Siqi, GU Fangwei, ZHENG Jinyu. Development status and prospect of low iridium catalysts for hydrogen production by PEM electrolysis [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 158-168. |
| [8] | SONG Shunming, ZHANG Jingwen, ZHANG Liangqing, QIU Jiarong, CHEN Jianfeng, ZENG Xianhai. Catalytic transformation of biomass-derived polyols to diols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 228-252. |
| [9] | QIN Tingting, NIU Qiang. Research progress on Fe-based catalysts for CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 253-265. |
| [10] | ZHUANG Ke, CHEN Hong, XU Yun, ZHONG Zhaoping, ZHOU Junwu, ZHOU Kai, DONG Yuehong. Resistance of SiO2 modified Ce-V-W/Ti catalyst support to alkali (earth) metal poisoning [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 266-276. |
| [11] | DONG Jiatong, SHAN Mengqing, WANG Hua. Improved electrocatalytic CO2 reduction to ethanol by Au-CuO/Cu2O catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 277-285. |
| [12] | YOU Xiaoyin, WANG Chuqiao, LIU Caihua, PENG Xiaoming. Z-scheme CN/NGBO/BV catalytic system and its photo-like Fenton degradation performance of tetracycline [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 286-296. |
| [13] | LI Jiayou, ZHANG Yuhan, JIANG Nan, JIANG Bolong. Preparation of transition metal sulfide NiS(x)@NFcatalyst by hydrothermal method and its hydrogen evolution performance [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 297-304. |
| [14] | WANG Ning, LU Shijian, LIU Ling, LIANG Jing, LIU Miaomiao, SUN Mengyuan, KANG Guojun. Research progress of catalytic regeneration for energy-efficient CO2 capture in amine absorption system [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 445-464. |
| [15] | NI Peng, WANG Xianhong, HUANG Yuhan, MA Xiaotong, MA Zizhen, TAN Yan, ZHANG Huawei, LIU Ting. Latest progress and comparison of the injection demercuration application of activated carbon and magnetic metals adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 513-524. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |