Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (S1): 213-221.DOI: 10.16085/j.issn.1000-6613.2025-0231
• Industrial catalysis • Previous Articles
ZHAO Yulong(
), CAI Kai, YU Shanqing(
)
Received:2025-02-18
Revised:2025-04-28
Online:2025-11-24
Published:2025-10-25
Contact:
YU Shanqing
通讯作者:
于善青
作者简介:赵雨龙(1999—),男,硕士研究生,研究方向为催化裂化催化剂。E-mail:zhaoyl199910@163.com。
基金资助:CLC Number:
ZHAO Yulong, CAI Kai, YU Shanqing. Influence of pore structure of alumina on the adsorption, diffusion and reactivity of hydrocarbon molecules in catalytic cracking[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 213-221.
赵雨龙, 蔡凯, 于善青. 氧化铝孔结构对催化裂化烃类分子吸附扩散及反应性能的影响[J]. 化工进展, 2025, 44(S1): 213-221.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0231
| 样品 | Al-0 | Al-6 | Al-9 | Al-11 |
|---|---|---|---|---|
| Al2O3质量分数/% | 98.6 | 98.1 | 97.6 | 97.8 |
| 比表面积/m2·g-1 | 231.3 | 226.6 | 254.9 | 348.8 |
| 微孔比表面积/m2·g-1 | — | 10.4 | 24.3 | 32.4 |
| 介孔比表面积/m2·g-1 | 231.3 | 216.1 | 230.6 | 316.3 |
| 总孔体积/cm3·g-1 | 0.424 | 0.757 | 0.944 | 1.164 |
| 微孔体积/cm3·g-1 | — | 0.019 | 0.026 | 0.03 |
| 介孔体积/cm3·g-1 | 0.424 | 0.738 | 0.918 | 1.134 |
| 总酸量/mmol·g-1 | 0.61 | 0.65 | 0.64 | 0.63 |
| 样品 | Al-0 | Al-6 | Al-9 | Al-11 |
|---|---|---|---|---|
| Al2O3质量分数/% | 98.6 | 98.1 | 97.6 | 97.8 |
| 比表面积/m2·g-1 | 231.3 | 226.6 | 254.9 | 348.8 |
| 微孔比表面积/m2·g-1 | — | 10.4 | 24.3 | 32.4 |
| 介孔比表面积/m2·g-1 | 231.3 | 216.1 | 230.6 | 316.3 |
| 总孔体积/cm3·g-1 | 0.424 | 0.757 | 0.944 | 1.164 |
| 微孔体积/cm3·g-1 | — | 0.019 | 0.026 | 0.03 |
| 介孔体积/cm3·g-1 | 0.424 | 0.738 | 0.918 | 1.134 |
| 总酸量/mmol·g-1 | 0.61 | 0.65 | 0.64 | 0.63 |
| 样品 | 温度/K | qs,1/mmol·g-1 | b1/mbar-1 | n1 | qs,2/mmol·g-1 | b2/mbar-1 | n2 | KH/mmol·g-1·mbar-1 | Qst/kJ·mol-1 |
|---|---|---|---|---|---|---|---|---|---|
| Al-0 | 298 | — | — | — | 2.48 | 0.32 | 0.68 | 1.54 | 39.82 |
| 308 | — | — | — | 2.13 | 0.29 | 0.63 | 1.43 | ||
| 318 | — | — | — | 2.02 | 0.17 | 0.76 | 1.30 | ||
| Al-6 | 298 | 0.80 | 0.07 | 0.22 | 3.09 | 0.17 | 1.38 | 1.43 | 31.75 |
| 308 | 0.73 | 0.03 | 0.04 | 3.03 | 0.09 | 1.20 | 1.38 | ||
| 318 | 0.65 | 0.02 | 0.04 | 2.97 | 0.08 | 1.40 | 1.05 | ||
| Al-9 | 298 | 1.12 | 0.04 | 0.02 | 3.25 | 0.13 | 1.41 | 1.32 | 26.63 |
| 308 | 1.05 | 0.03 | 0.18 | 3.05 | 0.04 | 1.80 | 1.22 | ||
| 318 | 0.99 | 0.02 | 0.13 | 3.01 | 0.04 | 1.59 | 1.05 | ||
| Al-11 | 298 | 1.32 | 0.04 | 0.12 | 3.47 | 0.09 | 1.38 | 0.85 | 18.18 |
| 308 | 1.25 | 0.03 | 0.14 | 3.40 | 0.04 | 1.57 | 0.73 | ||
| 318 | 1.11 | 0.02 | 0.23 | 3.30 | 0.03 | 1.95 | 0.62 |
| 样品 | 温度/K | qs,1/mmol·g-1 | b1/mbar-1 | n1 | qs,2/mmol·g-1 | b2/mbar-1 | n2 | KH/mmol·g-1·mbar-1 | Qst/kJ·mol-1 |
|---|---|---|---|---|---|---|---|---|---|
| Al-0 | 298 | — | — | — | 2.48 | 0.32 | 0.68 | 1.54 | 39.82 |
| 308 | — | — | — | 2.13 | 0.29 | 0.63 | 1.43 | ||
| 318 | — | — | — | 2.02 | 0.17 | 0.76 | 1.30 | ||
| Al-6 | 298 | 0.80 | 0.07 | 0.22 | 3.09 | 0.17 | 1.38 | 1.43 | 31.75 |
| 308 | 0.73 | 0.03 | 0.04 | 3.03 | 0.09 | 1.20 | 1.38 | ||
| 318 | 0.65 | 0.02 | 0.04 | 2.97 | 0.08 | 1.40 | 1.05 | ||
| Al-9 | 298 | 1.12 | 0.04 | 0.02 | 3.25 | 0.13 | 1.41 | 1.32 | 26.63 |
| 308 | 1.05 | 0.03 | 0.18 | 3.05 | 0.04 | 1.80 | 1.22 | ||
| 318 | 0.99 | 0.02 | 0.13 | 3.01 | 0.04 | 1.59 | 1.05 | ||
| Al-11 | 298 | 1.32 | 0.04 | 0.12 | 3.47 | 0.09 | 1.38 | 0.85 | 18.18 |
| 308 | 1.25 | 0.03 | 0.14 | 3.40 | 0.04 | 1.57 | 0.73 | ||
| 318 | 1.11 | 0.02 | 0.23 | 3.30 | 0.03 | 1.95 | 0.62 |
| 样品 | 流速/mL·min-1 | 温度/K | (Deff/R2)/s-1 |
|---|---|---|---|
| Al-0 | 120 | 393 | 7.35×10-5 |
| 120 | 413 | 1.52×10-4 | |
| 120 | 433 | 2.52×10-4 | |
| 120 | 453 | 4.30×10-4 | |
| Al-6 | 120 | 393 | 4.21×10-5 |
| 120 | 413 | 7.34×10-5 | |
| 120 | 433 | 1.22×10-4 | |
| 120 | 453 | 1.91×10-4 | |
| Al-9 | 120 | 393 | 1.02×10-4 |
| 120 | 413 | 1.16×10-4 | |
| 120 | 433 | 2.73×10-4 | |
| 120 | 453 | 7.38×10-4 | |
| Al-11 | 120 | 393 | 1.84×10-4 |
| 120 | 413 | 3.25×10-4 | |
| 120 | 433 | 4.22×10-4 | |
| 120 | 453 | 6.00×10-4 |
| 样品 | 流速/mL·min-1 | 温度/K | (Deff/R2)/s-1 |
|---|---|---|---|
| Al-0 | 120 | 393 | 7.35×10-5 |
| 120 | 413 | 1.52×10-4 | |
| 120 | 433 | 2.52×10-4 | |
| 120 | 453 | 4.30×10-4 | |
| Al-6 | 120 | 393 | 4.21×10-5 |
| 120 | 413 | 7.34×10-5 | |
| 120 | 433 | 1.22×10-4 | |
| 120 | 453 | 1.91×10-4 | |
| Al-9 | 120 | 393 | 1.02×10-4 |
| 120 | 413 | 1.16×10-4 | |
| 120 | 433 | 2.73×10-4 | |
| 120 | 453 | 7.38×10-4 | |
| Al-11 | 120 | 393 | 1.84×10-4 |
| 120 | 413 | 3.25×10-4 | |
| 120 | 433 | 4.22×10-4 | |
| 120 | 453 | 6.00×10-4 |
| [1] | 杨朝合, 陈小博, 李春义, 等. 催化裂化技术面临的挑战与机遇[J]. 中国石油大学学报(自然科学版), 2017, 41(6): 171-177. |
| YANG Chaohe, CHEN Xiaobo, LI Chunyi, et al. Challenges and opportunities of fluid catalytic cracking technology[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(6): 171-177. | |
| [2] | 王博, 段爱军, 陈振涛, 等. 重质油在催化剂孔道内受限扩散及其关联模型研究进展[J]. 工业催化, 2017, 25(9): 1-9. |
| WANG Bo, DUAN Aijun, CHEN Zhentao, et al. Research progress in restrictive diffusion and its empirical correlation of heavy oil in catalyst pore channels[J]. Industrial Catalysis, 2017, 25(9): 1-9. | |
| [3] | CHEN Wenzhe, HAN Dongmin, SUN Xiaohui, et al. Studies on the preliminary cracking of heavy oils: Contributions of various factors[J]. Fuel, 2013, 106: 498-504. |
| [4] | OTTERSTEDT J E, ZHU Yanming, STERTE J. Catalytic cracking of heavy oil over catalysts containing different types of zeolite Y in active and inactive matrices[J]. Applied Catalysis, 1988, 38(1): 143-155. |
| [5] | WANG Bin, LI Nan, ZHANG Qiang, et al. Studies on the preliminary cracking: The reasons why matrix catalytic function is indispensable for the catalytic cracking of feed with large molecular size[J]. Journal of Energy Chemistry, 2016, 25(4): 641-653. |
| [6] | MIZUNO Takaki, YAMAZAKI Hiroshi, TAKAMIYA Yusuke, et al. Effects of the FCC catalyst binder type on propylene production during catalytic cracking of VGO[J]. Applied Catalysis A: General, 2023, 661: 119214. |
| [7] | 于善青, 代振宇, 田辉平, 等. 采用密度泛函理论研究金属离子改性Y型分子筛的酸性[J]. 石油学报(石油加工), 2011, 27(6): 839-844. |
| YU Shanqing, DAI Zhenyu, TIAN Huiping, et al. Study on the acidity of metal cation modified y zeolites by density functional theory[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2011, 27(6): 839-844. | |
| [8] | GUO Shuo, YU Shanqing, TIAN Huiping, et al. Mechanistic insights into the interaction between binders and Y-type zeolites in fluid catalytic cracking[J]. Fuel, 2022, 324: 124640. |
| [9] | 张春光, 邵嘉欣, 王延飞, 等. 合成方法对拟薄水铝石孔结构的影响[J]. 工业催化, 2022, 30(11): 63-69. |
| ZHANG Chunguang, SHAO Jiaxin, WANG Yanfei, et al. Effect of synthesis method on pore structure of pseudo boehmite[J]. Industrial Catalysis, 2022, 30(11): 63-69. | |
| [10] | ZHENG Yongsheng, SONG Jiaqing, XU Xiangyu, et al. Peptization mechanism of boehmite and its effect on the preparation of a fluid catalytic cracking catalyst[J]. Industrial & Engineering Chemistry Research, 2014, 53(24): 10029-10034. |
| [11] | 王楚, 冯辉霞, 梁顺琴, 等. Al2(SO4)3-NH3·H2O法大孔拟薄水铝石的制备及其应用[J]. 工业催化, 2015, 23(7): 541-544. |
| WANG Chu, FENG Huixia, LIANG Shunqin, et al. Preparation of macropore pseudo-poehmite by Al2(SO4)3-NH3·H2O process and its application[J]. Industrial Catalysis, 2015, 23(7): 541-544. | |
| [12] | 符荣, 闫伟鹏, 王亚楠, 等. 硼掺杂方式对活性氧化铝性质与结构的影响[J]. 石油化工, 2018, 47(4): 315-319. |
| FU Rong, YAN Weipeng, WANG Yanan, et al. Influence of boron doping methods on properties and structure of activated alumina[J]. Petrochemical Technology, 2018, 47(4): 315-319. | |
| [13] | FENG Rui, LIU Songtao, BAI Peng, et al. Preparation and characterization of γ-Al2O3 with rich brønsted acid sites and its application in the fluid catalytic cracking process[J]. The Journal of Physical Chemistry C, 2014, 118(12): 6226-6234. |
| [14] | 陈兰菊, 郭绍辉, 赵地顺. 催化裂化汽油中特征硫化物噻吩的催化氧化脱硫[J]. 化工学报, 2007, 58(3): 652-655. |
| CHEN Lanju, GUO Shaohui, ZHAO Dishun. Oxidative desulfurization of thiophene in fluid catalytic cracking gasoline[J]. CIESC Journal, 2007, 58(3): 652-655. | |
| [15] | LIU Zhangli, XU Jiaxing, XU Min, et al. Ultralow-temperature-driven water-based sorption refrigeration enabled by low-cost zeolite-like porous aluminophosphate[J]. Nature Communications, 2022, 13(1): 193. |
| [16] | 胡林谢. 加氢催化剂孔内扩散性能表征新方法及其应用研究[D]. 北京: 中国石油大学(北京), 2021. |
| HU Linxie. A new method for diffusion characterization of hydrotreating catalysts and its application[D]. Beijing: China University of Petroleum (Beijing), 2021. | |
| [17] | CHOI Yunji, KIM Gunjoo, KIM Jinwoong, et al. Anchoring catalytically active species on alumina via surface hydroxyl group for durable surface reaction[J]. Applied Catalysis B: Environmental, 2023, 325: 122325. |
| [18] | CAVALCANTE Célio L, SILVA Neuma M, SOUZA-AGUIAR Eduardo F, et al. Diffusion of paraffins in dealuminated Y mesoporous molecular sieve[J]. Adsorption, 2003, 9(3): 205-212. |
| [19] | Duong D DO. Adsorption analysis: Equilibria and kinetics[M]. London: Imperial College Press, 1998. |
| [20] | DENG Hua, YI Honghong, TANG Xiaolong, et al. Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13X and 5A zeolites[J]. Chemical Engineering Journal, 2012, 188: 77-85. |
| [21] | Mladen EIC, RUTHVEN Douglas M. A new experimental technique for measurement of intracrystalline diffusivity[J]. Zeolites, 1988, 8(1): 40-45. |
| [22] | HAN Minghan, YIN Xiuyan, JIN Yong, et al. Diffusion of aromatic hydrocarbon in ZSM-5 studied by the improved zero length column method[J]. Industrial & Engineering Chemistry Research, 1999, 38(8): 3172-3175. |
| [23] | CANET Xavier, NOKERMAN Joëlle, Marc FRÈRE. Determination of the henry constant for zeolite-VOC systems using massic and chromatographic adsorption data[J]. Adsorption, 2005, 11(1): 213-216. |
| [24] | QI Jian, JIN Quan, ZHAO Kun, et al. Catalytic cracking of 1,3,5-triisopropylbenzene over silicoaluminophosphate with hierarchical pore structure[J]. Journal of Porous Materials, 2015, 22(4): 1021-1032. |
| [1] | QIN Fei, ZHANG Zhi, SONG Guangchun, WANG Wuchang, LI Yuxing, WANG Shixin, HE Sicheng, WANG Jiangyan. Advances in research on the molecular dynamics behaviors of hydrate-based hydrogen storage [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 112-123. |
| [2] | WU Jinyi, ZHAO Ruikai, DENG Shuai, ZHANG Jiaqi, GAO Chunxiao, LIU Weihua, ZHAO Li. Numerical simulation of temperature swing adsorption for SF6 recovery from mixed insulating gas [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 19-28. |
| [3] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [4] | FU Hongmei, LIU Dinghua, LIU Xiaoqin. Research progress on the separation of aromatic isomers using MOF materials [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5006-5017. |
| [5] | ZHANG Wenjing, HUANG Zhixin, LI Shiteng, DENG Shuai, LI Shuangjun. Biomass carbon aerogels for CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5018-5032. |
| [6] | SUN Mengyuan, LU Shijian, LIU Ling, XUE Yanyang, ZHANG Yunrong, DONG Qi, KANG Guojun. Research progress of MOF and their derivatives in carbon capture [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5339-5350. |
| [7] | YANG Yong, ZHANG Zhao, WANG Dongliang, ZHOU Huairong, ZHAO Zihao, LI Yukun. Technical-economic evaluation for different separation strategies of xylene isomers [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4732-4740. |
| [8] | GAO Jiaojiao, YAN Shiyu, YANG Taishun, XIE Shangzhi, YANG Yanjuan, XU Jing. Effect of alumina support crystal structure of Ru-based catalysts on polyethylene hydrogenolysis performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3917-3927. |
| [9] | LIANG Shuwei, YU Jie, XIE Zhongyin, PEI Jianlu, LIN Zhongxin, CHEN Zexiang. Covalent organic frameworks for radioactive gaseous iodine adsorption [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3965-3975. |
| [10] | WANG Ying, TANG Mengfei, WANG Ying, ZHANG Chuanfang, ZHANG Guojie, LIU Jun, ZHAO Yuqiong. Preparation of CNT composites from coal pyrolysis catalyzed by different alkali metals for adsorption of Rhodamine B [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3985-3996. |
| [11] | ZHAO Baohua, LIU Xiaona, HU Yanyun, JIA Tiancong, XIE Qiang, HE Yan, MA Xiangshuai, MA Shuangchen. Comparison and development trend of traditional electroadsorption and flow electrode capacitive deion technology [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4101-4116. |
| [12] | YE Xiaosheng, YUAN Ting, JIA Xin, REN Qingxia. Research progress on the removal of microcystin-LR by multicomponent composite nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4144-4157. |
| [13] | MI Yifang, WANG Baoguo, WANG Wenqiang, SUN Guojin, CAO Zhihai. Preparation of nitrogen self-doped cyanobacterial biomass-based activated carbon for CO2 adsorption [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4223-4232. |
| [14] | LI Hongwei, XU Hanqiao, ZHAO Yan, LIU Yaozong, TENG Zhijun, JI Dong, LI Guixian. Research progress and prospect of platinum-based catalysts for electrocatalytic methanol oxidation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3443-3456. |
| [15] | HAN Pei, LI Jinjian, KE Tian, ZHANG Zhiguo, BAO Zongbi, REN Qilong, YANG Qiwei. Advances in adsorption separation of sulfur hexafluoride/nitrogen by novel porous materials [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3592-3617. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |