Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 4101-4116.DOI: 10.16085/j.issn.1000-6613.2024-0801
• Resources and environmental engineering • Previous Articles
ZHAO Baohua1(
), LIU Xiaona2, HU Yanyun3, JIA Tiancong1, XIE Qiang2, HE Yan2, MA Xiangshuai4, MA Shuangchen2(
)
Received:2024-05-13
Revised:2024-07-19
Online:2025-08-04
Published:2025-07-25
Contact:
MA Shuangchen
赵保华1(
), 刘晓娜2, 胡彦云3, 贾天聪1, 谢强2, 贺燕2, 马相帅4, 马双忱2(
)
通讯作者:
马双忱
作者简介:赵保华(1979—),男,高级工程师,研究方向为火力发电厂给排水设计及技术管理。E-mail:zhaobh@chec.com.cn。
基金资助:CLC Number:
ZHAO Baohua, LIU Xiaona, HU Yanyun, JIA Tiancong, XIE Qiang, HE Yan, MA Xiangshuai, MA Shuangchen. Comparison and development trend of traditional electroadsorption and flow electrode capacitive deion technology[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4101-4116.
赵保华, 刘晓娜, 胡彦云, 贾天聪, 谢强, 贺燕, 马相帅, 马双忱. 传统电吸附与流动电极电容去离子技术对比和发展趋势[J]. 化工进展, 2025, 44(7): 4101-4116.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0801
| 特征 | 电吸附(CDI) | 流动电极电吸附(FCDI) |
|---|---|---|
| 原理 | 利用静态电极的表面电荷吸附水中的离子 | 利用动态流动的电极浆料中的颗粒电荷吸附水中的离子,同时还有一部分电渗析原理去除离子,以提高吸附效率 |
| 主要用途 | 去除水中的重金属离子、有机污染物等 | 主要用于大规模水处理,如工业废水处理、城市供水中的脱盐、特殊离子的去除和收集及去除重金属等 |
| 设备构成 | 包括固定电极(如活性炭电极)、电源等 | 包括流动电极浆料、FCDI装置、蠕动泵、电源等 |
| 能耗 | 相对较低,因为只涉及离子的吸附和释放 | 较传统电吸附高,因为需要额外能量来维持电极浆料的流动和循环 |
| 操作方式 | 常温下操作,过程相对简单,压力影响不大 | 操作较复杂,需要维持电极浆料的稳定流动和循环,温度和压力的控制更为关键 |
| 效率 | 受电极表面积限制,大规模处理时可能面临效率低下问题 | 由于电极材料的连续循环利用,能够在大流量处理中保持较高的去除效率 |
| 环境影响 | 环境友好,化学添加剂需求较少 | 同样环境友好,但需要考虑电极浆料的长期稳定性和可能的环境影响 |
| 特征 | 电吸附(CDI) | 流动电极电吸附(FCDI) |
|---|---|---|
| 原理 | 利用静态电极的表面电荷吸附水中的离子 | 利用动态流动的电极浆料中的颗粒电荷吸附水中的离子,同时还有一部分电渗析原理去除离子,以提高吸附效率 |
| 主要用途 | 去除水中的重金属离子、有机污染物等 | 主要用于大规模水处理,如工业废水处理、城市供水中的脱盐、特殊离子的去除和收集及去除重金属等 |
| 设备构成 | 包括固定电极(如活性炭电极)、电源等 | 包括流动电极浆料、FCDI装置、蠕动泵、电源等 |
| 能耗 | 相对较低,因为只涉及离子的吸附和释放 | 较传统电吸附高,因为需要额外能量来维持电极浆料的流动和循环 |
| 操作方式 | 常温下操作,过程相对简单,压力影响不大 | 操作较复杂,需要维持电极浆料的稳定流动和循环,温度和压力的控制更为关键 |
| 效率 | 受电极表面积限制,大规模处理时可能面临效率低下问题 | 由于电极材料的连续循环利用,能够在大流量处理中保持较高的去除效率 |
| 环境影响 | 环境友好,化学添加剂需求较少 | 同样环境友好,但需要考虑电极浆料的长期稳定性和可能的环境影响 |
| [1] | 杨群, 徐子阳, 张常勇. 电容去离子技术在选择性分离中的应用和挑战[J]. 能源环境保护, 2024, 38(1): 38-51. |
| YANG Qun, XU Ziyang, ZHANG Changyong. Applications and challenges of capacitive deionization technology in selective separation[J]. Energy Environmental Protection, 2024, 38(1): 38-51. | |
| [2] | JAMALY S, DARWISH N N, AHMED I, et al. A short review on reverse osmosis pretreatment technologies[J]. Desalination, 2014, 354: 30-38. |
| [3] | GAO Yujie, YANG Hao, ZHOU Bowen, et al. Optimal operation of new coastal power systems with seawater desalination based on grey wolf optimization[J]. Energy Reports, 2023, 9: 391-402. |
| [4] | EL-MAATY Ahmed E ABU, AWAD Mohamed M, SULTAN Gamal I, et al. Innovative approaches to solar desalination: A comprehensive review of recent research[J]. Energies, 2023, 16(9): 3957. |
| [5] | GHALAVAND Younes, HATAMIPOUR Mohammad Sadegh, RAHIMI Amir. A review on energy consumption of desalination processes[J]. Desalination and Water Treatment, 2015, 54(6): 1526-1541. |
| [6] | MURPHY G W, TUCKER J H. The demineralization behavior of carbon and chemically-modified carbon electrodes[J]. Desalination, 1966, 1(3): 247-259. |
| [7] | 王祺, 房阔, 贺聪慧, 等. 流动电极电容去离子技术综述: 研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989. |
| WANG Qi, FANG Kuo, HE Conghui, et al. Recent development and future challenges of flow-electrode capacitive deionization[J]. CIESC Journal, 2022, 73(3): 975-989. | |
| [8] | FANG Kuo, GONG Hui, HE Wenyan, et al. Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization[J]. Chemical Engineering Journal, 2018, 348: 301-309. |
| [9] | VON HELMHOLTZ H L F. Some laws concerning the distribution of electric currents in volume conductors with applications to experiments on animal electricity[J]. Proceedings of the IEEE, 2004, 92(5): 868-870. |
| [10] | PORADA S, WEINGARTH D, HAMELERS H V M, et al. Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation[J]. Journal of Materials Chemistry A, 2014, 2(24): 9313-9321. |
| [11] | LEE Jae-Bong, PARK Kwang-Kyu, Hee-Moon EUM, et al. Desalination of a thermal power plant wastewater by membrane capacitive deionization[J]. Desalination, 2006, 196(1/2/3): 125-134. |
| [12] | JEON Sung-il, PARK Hong-ran, Jeong-gu YEO, et al. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J]. Energy & Environmental Science, 2013, 6(5): 1471-1475. |
| [13] | NATIV Paz, BADASH Yuval, GENDEL Youri. New insights into the mechanism of flow-electrode capacitive deionization[J]. Electrochemistry Communications, 2017, 76: 24-28. |
| [14] | GENDEL Youri, ROMMERSKIRCHEN Alexandra Klara Elisabeth, DAVID Oana, et al. Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology[J]. Electrochemistry Communications, 2014, 46: 152-156. |
| [15] | AL-RAJABI Maha Mohammad, ABUMADI Farah Anwar, LAOUI Tahar, et al. Capacitive deionization for water desalination: Cost analysis, recent advances, and process optimization[J]. Journal of Water Process Engineering, 2024, 58: 104816. |
| [16] | 张若汉. 连续进水运行模式电容去离子技术研究[D]. 重庆: 重庆大学, 2017. |
| ZHANG Ruohan. Study on capacitance deionization technology in continuous water inlet operation mode[D]. Chongqing: Chongqing University, 2017. | |
| [17] | PORADA S, ZHAO R, VAN DER WAL A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442. |
| [18] | 马岚. 电容去离子技术用于电厂循环冷却排污水脱盐实验研究[D]. 北京: 华北电力大学, 2021. |
| MA Lan. Experimental study on desalination of circulating cooling sewage in power plant by capacitive deionization technology[D]. Beijing: North China Electric Power University, 2021. | |
| [19] | SENOUSSI Hasna, BOUHIDEL Kamel-Eddine. Feasibility and optimisation of a batch mode capacitive deionization (BM CDI) process for textile cationic dyes (TCD) removal and recovery from industrial wastewaters[J]. Journal of Cleaner Production, 2018, 205: 721-727. |
| [20] | ZHANG Wanni, XUE Wenchao, ZHANG Chunpeng, et al. Towards long-term operation of flow-electrode capacitive deionization (FCDI): Optimization of operating parameters and regeneration of flow-electrode[J]. Heliyon, 2024, 10(2): e24940. |
| [21] | HE Calvin, MA Jinxing, ZHANG Changyong, et al. Short-circuited closed-cycle operation of flow-electrode CDI for brackish water softening[J]. Environmental Science & Technology, 2018, 52(16): 9350-9360. |
| [22] | YANG SeungCheol, KIM Hanki, JEON Sung-il, et al. Analysis of the desalting performance of flow-electrode capacitive deionization under short-circuited closed cycle operation[J]. Desalination, 2017, 424: 110-121. |
| [23] | LUO Kunyue, NIU Qiuya, ZHU Yuan, et al. Desalination behavior and performance of flow-electrode capacitive deionization under various operational modes[J]. Chemical Engineering Journal, 2020, 389: 124051. |
| [24] | 周田恬, 赖倩, 韩春晓, 等. 电容去离子脱盐装置构型的研究进展[J]. 化学通报, 2024, 87(3): 282-289. |
| ZHOU Tiantian, LAI Qian, HAN Chunxiao, et al. Research progress in capacitive deionization desalination device configuration[J]. Chemistry, 2024, 87(3): 282-289. | |
| [25] | 李丹丹, 孙文全, 李金鑫, 等. 卷式活性炭纤维电极电吸附除盐试验研究[J]. 环境工程, 2015, 33(S1): 198-200, 224. |
| LI Dandan, SUN Wenquan, LI Jinxin, et al. Study on electric adsorption desalination of volume-activated carbon fiber electrode[J]. Environmental Engineering, 2015, 33(S1): 198-200, 224. | |
| [26] | LIU Xiaona, ZHAO Baohua, HU Yanyun, et al. Enhancing capacitive deionization performance and cyclic stability of nitrogen-doped activated carbon by the electro-oxidation of anode materials[J]. Chinese Journal of Chemical Engineering, 2024, 69: 23-33. |
| [27] | 刘萌. 电吸附极板材料对电吸附性能的影响研究[D]. 兰州: 兰州交通大学, 2016. |
| LIU Meng. Study on the influence of electroadsorption plate materials on electroadsorption performance[D]. Lanzhou: Lanzhou Jiatong University, 2016. | |
| [28] | TAUK Myriam, FOLARANMI Gbenro, CRETIN Marc, et al. Recent advances in capacitive deionization: A comprehensive review on electrode materials[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111368. |
| [29] | Yiying LYU, ZHANG Lin, WANG Yongqiang. Simultaneously improving surface area and hydrophilicity of biomass activated carbon for achieving superior desalination performance in CDI[J]. Desalination and Water Treatment, 2024, 318: 100318. |
| [30] | LI Yun, LI Hongxiang, ZHOU Tiantian, et al. Platanus acerifolia (Aiton) Willd. fruit-derived nitrogen-doped porous carbon as an electrode material for the capacitive deionization of brackish water[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109914. |
| [31] | NGUYEN Thai Hoang, NGUYEN Van Vien, NGUYEN Ngan Tuan, et al. Preparation, characterization and CDI application of KOH-activated porous waste-corn-stalk-based carbon aerogel[J]. Journal of Porous Materials, 2023, 30(4): 1183-1193. |
| [32] | 卞维柏, 潘建明. 电吸附技术及吸附电极材料研究进展[J]. 化工学报, 2021, 72(1): 304-319. |
| BIAN Weibai, PAN Jianming. Research progress on electro-sorption technology and fabrication of adsorptive electrode materials[J]. CIESC Journal, 2021, 72(1): 304-319. | |
| [33] | 鲍阳. PBA基电极材料电容脱盐法选择性去除/提取水中金属离子的研究[D]. 南京: 南京信息工程大学, 2023. |
| BAO Yang. Study on selective removal/extraction of metal ions from water by capacitance desalination of PBA-based electrode materials[D]. Nanjing: Nanjing University of Information Science & Technology, 2023. | |
| [34] | KIM Yonghwan, KIM Hyunjung, KIM Kwiyong, et al. Electrosorption of cadmium ions in aqueous solutions using a copper-gallate metal-organic framework[J]. Chemosphere, 2022, 286: 131853. |
| [35] | GONG Ao, ZHAO Yubo, LIANG Bolong, et al. Stepwise hollow Prussian blue/carbon nanotubes composite as a novel electrode material for high-performance desalination[J]. Journal of Colloid and Interface Science, 2022, 605: 432-440. |
| [36] | LIANG Mingxing, WANG Lei, PRESSER Volker, et al. Combining battery-type and pseudocapacitive charge storage in Ag/Ti3C2T x MXene electrode for capturing chloride ions with high capacitance and fast ion transport[J]. Advanced Science, 2020, 7(18): 2000621. |
| [37] | SRIMUK Pattarachai, ZEIGER Marco, Nicolas JÄCKEL, et al. Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water[J]. Electrochimica Acta, 2017, 224: 314-328. |
| [38] | 俞琴, 舒纯, 王丹. 轧钢酸性废水深度处理回用技术研究[J]. 冶金动力, 2024, 43(2): 47-51. |
| YU Qin, SHU Chun, WANG Dan. Research on deep treatment and recycle technology of acidic steel rolling wastewater[J]. Metallurgical Power, 2024, 43(2): 47-51. | |
| [39] | 邹正东. 电吸附除盐技术用于梅钢再生水中试研究[J]. 冶金动力, 2022, 41(5): 73-76. |
| ZOU Zhengdong. Electrosorption desalination technology for pilot scale of reclaimed water in meisteel[J]. Metallurgical Power, 2022, 41(5): 73-76. | |
| [40] | 阿力木江·斯拉木, 史殿彬, 石文忠, 等. 电吸附技术用于处理城市污水再生水的中试研究[J]. 工业水处理, 2013, 33(4): 36-39. |
| Silamu Alimujiang, SHI Dianbin, SHI Wenzhong, et al. Pilot-scale study on electrosorption technology used for treating urban sewage reclaimed water[J]. Industrial Water Treatment, 2013, 33(4): 36-39. | |
| [41] | 曹志豪. 电吸附法污水处理回用中试研究[J]. 山东化工, 2017, 46(4): 147-149. |
| CAO Zhihao. Pilot study on wastewater treatment and reuse by electro-adsorption method[J]. Shandong Chemical Industry, 2017, 46(4): 147-149. | |
| [42] | 徐永清, 周北海, 张鸿涛, 等. 电吸附工艺用于焦化废水深度处理的中试[J]. 环境科学研究, 2014, 27(6): 663-669. |
| XU Yongqing, ZHOU Beihai, ZHANG Hongtao, et al. Pilot study on desalination of coke wastewater by electro-absorption technology[J]. Research of Environmental Sciences, 2014, 27(6): 663-669. | |
| [43] | ROMMERSKIRCHEN Alexandra, GENDEL Youri, WESSLING Matthias. Single module flow-electrode capacitive deionization for continuous water desalination[J]. Electrochemistry Communications, 2015, 60: 34-37. |
| [44] | XIE Bo, LIU Qilin, TAN Guangqun, et al. A novel four-chamber flow electrode capacitive deionization system for continuous recovery of heavy metal ions from wastewater[J]. Separation and Purification Technology, 2023, 319: 124055. |
| [45] | MA Junjun, CHEN Ruicheng, GU Jiarong, et al. Improving the energy utilization efficiency of flow electrode capacitive deionization (FCDI) with multiple series flow electrodes[J]. Separation and Purification Technology, 2024, 329: 125153. |
| [46] | MA Jinxing, MA Junjun, ZHANG Changyong, et al. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration[J]. Water Research, 2020, 168: 115186. |
| [47] | SUN Jingyi, GARG Shikha, David WAITE T. A novel integrated flow-electrode capacitive deionization and flow cathode system for nitrate removal and ammonia generation from simulated groundwater[J]. Environmental Science & Technology, 2023, 57(39): 14726-14736. |
| [48] | LINNARTZ Christian J, ROMMERSKIRCHEN Alexandra, WESSLING Matthias, et al. Flow-electrode capacitive deionization for double displacement reactions[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 3906-3912. |
| [49] | SHIN Yong-Uk, Jihun LIM, Chanhee BOO, et al. Improving the feasibility and applicability of flow-electrode capacitive deionization (FCDI): Review of process optimization and energy efficiency[J]. Desalination, 2021, 502: 114930. |
| [50] | DOORNBUSCH G J, DYKSTRA J E, BIESHEUVEL P M, et al. Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization[J]. Journal of Materials Chemistry A, 2016, 4(10): 3642-3647. |
| [51] | CAI Yanmeng, ZHAO Xiaotong, WANG Yue, et al. Enhanced desalination performance utilizing sulfonated carbon nanotube in the flow-electrode capacitive deionization process[J]. Separation and Purification Technology, 2020, 237: 116381. |
| [52] | FREIRE Nelson H J, LINNARTZ Christian J, MONTORO Luciano A, et al. Flow electrode capacitive deionization with iron-based redox electrolyte[J]. Desalination, 2024, 578: 117313. |
| [53] | YANG Ruoying, XU Xia, TENG Jie, et al. Porous carbon flow-electrode derived from modified MOF-5 for capacitive deionization[J]. Desalination, 2024, 569: 117077. |
| [54] | ALSULTAN Abdullah, ALKHALDI Abdulrahman, ALSAIKHAN Khaled, et al. Surface-treated carbon black for durable, efficient, continuous flow electrode capacitive deionization[J]. Separation and Purification Technology, 2023, 313: 123444. |
| [55] | LUO Kunyue, CHEN Ming, XING Wenle, et al. Significantly enhanced desalination performance of flow-electrode capacitive deionization via cathodic iodide redox couple and its great potential in treatment of iodide-containing saline wastewater[J]. Chemical Engineering Journal, 2021, 421: 129905. |
| [56] | YAN Lvji, ISSAKA ALHASSAN Sikpaam, GANG Haiyin, et al. Enhancing charge transfer utilizing ternary composite slurry for high-efficient flow-electrode capacitive deionization[J]. Chemical Engineering Journal, 2023, 468: 143413. |
| [57] | CHO Younghyun, YOO Chung-Yul, LEE Seung Woo, et al. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes[J]. Water Research, 2019, 151: 252-259. |
| [58] | LIANG Peng, SUN Xueliang, BIAN Yanhong, et al. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode[J]. Desalination, 2017, 420: 63-69. |
| [59] | LUO Liang, HE Qiang, YI Duo, et al. Indirect charging of carbon by aqueous redox mediators contributes to the enhanced desalination performance in flow-electrode CDI[J]. Water Research, 2022, 220: 118688. |
| [60] | YANG SeungCheol, CHOI Jiyeon, Jeong-Gu YEO, et al. Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration[J]. Environmental Science & Technology, 2016, 50(11): 5892-5899. |
| [61] | TANG Kexin, YIACOUMI Sotira, LI Yuping, et al. Optimal conditions for efficient flow-electrode capacitive deionization[J]. Separation and Purification Technology, 2020, 240: 116626. |
| [62] | MYUNG Seung-Taek, HITOSHI Yashiro, SUN Yang-Kook. Electrochemical behavior and passivation of current collectors in lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21(27): 9891-9911. |
| [63] | 忻泽堃, 王天玉, 曲久辉. 石墨毡集流体提升流动电极电容去离子脱盐性能[J]. 环境工程学报, 2023, 17(5): 1487-1495. |
| XIN Zekun, WANG Tianyu, QU Jiuhui. Enhanced desalination performance of flow electrode capacitive deionization by introduction of graphite felt as current collector[J]. Chinese Journal of Environmental Engineering, 2023, 17(5): 1487-1495. | |
| [64] | ZHANG Xinyuan, PANG Mengdie, WEI Yanan, et al. Three-dimensional titanium mesh-based flow electrode capacitive deionization for salt separation and enrichment in high salinity water[J]. Water Research, 2024, 251: 121147. |
| [65] | ZHAI Chunxiao, YUAN Jianhua, WANG Yabo, et al. Rectorite in flow-electrode capacitive deionization with three-dimensional current collector to achieve cost-effective desalination[J]. Desalination, 2024, 573: 117217. |
| [66] | ZHANG Haifeng, LI Yuna, HAN Jinglong, et al. Influence of ion exchange membrane arrangement on dual-channel flow electrode capacitive deionization: Theoretical analysis and experimentations[J]. Desalination, 2023, 548: 116288. |
| [67] | MOHSENI Mojtaba, LINNARTZ Christian J, ECHTERMEYER Sonia, et al. Flow-electrode capacitive deionization (FCDI) with microfiltration membranes for water reclamation from highly saline and dye-polluted wastewater[J]. Journal of Water Process Engineering, 2024, 59: 104954. |
| [68] | YIN Zhiwei, CHEN Lin, CAO Chuqing, et al. UiO-66-NH2 modified thin film nanocomposite (TFN) membranes for selective separation of Li+/Co2+ in a flow electrode capacitive deionization system[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111711. |
| [69] | Niklas KÖLLER, MANKERTZ Lukas, FINGER Selina, et al. Towards pilot scale flow-electrode capacitive deionization[J]. Desalination, 2024, 572: 117096. |
| [70] | YANG SeungCheol, JEON Sung-il, KIM Hanki, et al. Stack design and operation for scaling up the capacity of flow-electrode capacitive deionization technology[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(8): 4174-4180. |
| [71] | ULLAH Zahid, YOON Nakyung, TARUS Bethwel Kipchirchir, et al. Comparison of tree-based model with deep learning model in predicting effluent pH and concentration by capacitive deionization[J]. Desalination, 2023, 558: 116614. |
| [72] | Moon SON, YOON Nakyung, PARK Sanghun, et al. An open-source deep learning model for predicting effluent concentration in capacitive deionization[J]. Science of the Total Environment, 2023, 856: 159158. |
| [73] | SALARI K, ZARAFSHAN P, KHASHEHCHI M, et al. Modeling and predicting of water production by capacitive deionization method using artificial neural networks[J]. Desalination, 2022, 540: 115992. |
| [74] | NORDSTRAND Johan, DUTTA Joydeep. Simplified prediction of ion removal in capacitive deionization of multi-ion solutions[J]. Langmuir, 2020, 36(5): 1338-1344. |
| [75] | WANG Li, ZHANG Changyong, HE Calvin, et al. Equivalent film-electrode model for flow-electrode capacitive deionization: Experimental validation and performance analysis[J]. Water Research, 2020, 181: 115917. |
| [76] | BAZANT Martin Z, CHU Kevin T, BAYLY B J. Current-voltage relations for electrochemical thin films[J]. SIAM Journal on Applied Mathematics, 2005, 65(5): 1463-1484. |
| [77] | BIESHEUVEL P M, ZHAO R, PORADA S, et al. Theory of membrane capacitive deionization including the effect of the electrode pore space[J]. Journal of Colloid and Interface Science, 2011, 360(1): 239-248. |
| [78] | SHI Chufeng, WANG Hongyang, LI Ao, et al. Process model for flow-electrode capacitive deionization for energy consumption estimation and system optimization[J]. Water Research, 2023, 230: 119517. |
| [79] | ROMMERSKIRCHEN Alexandra, ALDERS Michael, WIESNER Florian, et al. Process model for high salinity flow-electrode capacitive deionization processes with ion-exchange membranes[J]. Journal of Membrane Science, 2020, 616: 118614. |
| [80] | DYKSTRA J E, KEESMAN K J, BIESHEUVEL P M, et al. Theory of pH changes in water desalination by capacitive deionization[J]. Water Research, 2017, 119: 178-186. |
| [81] | ROMMERSKIRCHEN Alexandra, Burkhard OHS, HEPP Karl Arturo, et al. Modeling continuous flow-electrode capacitive deionization processes with ion-exchange membranes[J]. Journal of Membrane Science, 2018, 546: 188-196. |
| [82] | 郭彬彬. 锰镧双金属氢氧化物的制备及其在流动电极中除氟效能与机理研究[D]. 济南: 济南大学, 2023. |
| GUO Binbin. Preparation of Mn-La bimetallic hydroxide and its fluoride removal efficiency and mechanism in mobile electrode[D]. Jinan: University of Jinan, 2023. | |
| [83] | 江欢. 流动电极电容去离子技术处理含盐高氟地下水的研究[D]. 长沙: 湖南大学, 2022. |
| JIANG Huan. Study on the treatment of saline and fluorine-rich groundwater by capacitance deionization technology with moving electrode[D]. Changsha: Hunan University, 2022. | |
| [84] | 张静. 流动电极电容去离子技术处理低浓度含磷废水的研究[D]. 长沙: 湖南大学, 2021. |
| ZHANG Jing. Study on the treatment of low concentration phosphorus-containing wastewater using flowing electrode capacitive deionization technology [D]. Hunan University, 2021. | |
| [85] | 尹浩宇. 流动电极电容去离子高效去除水体中铜/砷机理与应用[D]. 武汉: 华中农业大学, 2023. |
| YIN Haoyu. Mechanism and application of efficient removal of copper/arsenic in water by flow electrode capacitance deionization[D]. Wuhan: Huazhong Agricultural University, 2023. | |
| [86] | 杨宏艳. 微生物燃料电池—流动性电极电容去离子性能研究[D]. 太原: 太原理工大学, 2017. |
| YANG Hongyan. Study on capacitance deionization performance of microbial fuel cell-flowing electrode[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
| [87] | XU Longqian, XIE Yu, ZONG Yang, et al. Formic acid recovery from EDTA wastewater using coupled ozonation and flow-electrode capacitive deionization (Ozo/FCDI): Performance assessment at high cell voltage[J]. Separation and Purification Technology, 2021, 254: 117613. |
| [1] | CHEN Dongjian, SUN Yuqian, YIN Fengxiang. Preparation of FeNi3-Fe3O4/CN electrocatalysts and their electrocatalytic oxygen evolution performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3928-3937. |
| [2] | YU Ning, WANG Qiuyue, WANG Zhicai, GAO Ziyi, CHAI Yongming, DONG Bin. Double-sites synergistic regulation for boosting water oxidation of La1-x Ni1-y Fe y O3‑δ [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3976-3984. |
| [3] | KONG Can, LIU Yuhan, SHENG Yu, LIU Fang, CHANG Huazhen. Polyaniline enhanced cuprous oxide for carbon dioxide reduction [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3144-3153. |
| [4] | LI Hongwei, XU Hanqiao, ZHAO Yan, LIU Yaozong, TENG Zhijun, JI Dong, LI Guixian. Research progress and prospect of platinum-based catalysts for electrocatalytic methanol oxidation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3443-3456. |
| [5] | ZHANG Qian, QIN Shumin, YANG Chenxi, DUO Zeyu, TANG Qingping, YANG Zhouhong, JIANG Jiajun, FENG Yao, WAN Juan, LI Wei. Research progress on the impact of quorum sensing regulation on wastewater biological treatment processes [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3630-3641. |
| [6] | FAN Xiaoya, ZHAO Zhen, PENG Qiang. Review on electrocatalytic co-reduction of carbon dioxide and nitrate for urea synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2856-2869. |
| [7] | ZHANG Shuxi, CHEN Peiting, PU Jianbo, WANG Yuzuo, RUAN Dianbo, QIAO Zhijun. Effect of air inlet on secondary particle size and electrochemical properties of silicon/carbon anode materials [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2196-2201. |
| [8] | XIE Xinyao, WAN Fen, FU Xuanyu, FAN Yuting, CHEN Lingxiu, LI Peng. Catalytic performance and mechanism of CO2 electroreduction of Cu-Ag nanoclusters [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1387-1395. |
| [9] | HU Jiawei, LIU Yan, WANG Cong, LIU Meijing. Development and effect analysis of a double-layer granular reagent for treating high hardness water [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1695-1705. |
| [10] | JIN Yuyang, NIU Chuanfeng, LIU Yingshuo, DING Shi. Graphite powder/Nafion-Pb electrode for electrocatalytic reduction of oxalic acid to glycolic acid [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1003-1013. |
| [11] | LIU Zhihua, ZHAO Hongkui, LIU Xi, HAN Meiyi, LIU Jing, FANG Taowen, HUANG Puyu, GAN Zhiquan, XIE Caifeng. Research progress on wastewater treatment technologies of land-based aquaculture [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1053-1063. |
| [12] | ZHANG Xiaofang, GAN Wen, JI Zhijiao, XU Ming, LI Chufu, HE Guangli. Present situation and strategy of electrolytes for electrochemical nitrogen reduction to ammonia [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 809-819. |
| [13] | HE Ran, LIANG Hong, HUANG Hong, YANG Youli, ZHENG Qiang, LI Xi. Preparation of acetylene black/Fe3O4 catalysed cathodic electrode and removal of 2,4,6-trichlorophenol by electro-Fenton oxidation [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 572-582. |
| [14] | ZHOU Yu, TANG Tian, XIONG Ziyou, WEI Qi. Methanol to olefin wastewater treatment based on a two-stage microchannel separation process [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 100-108. |
| [15] | HONG Siqi, GU Fangwei, ZHENG Jinyu. Development status and prospect of low iridium catalysts for hydrogen production by PEM electrolysis [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 158-168. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |