Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 1053-1063.DOI: 10.16085/j.issn.1000-6613.2024-0194
• Resources and environmental engineering • Previous Articles
LIU Zhihua1,2(), ZHAO Hongkui1,2, LIU Xi1,2, HAN Meiyi1,2, LIU Jing1,2, FANG Taowen1,2, HUANG Puyu1,2, GAN Zhiquan1,2, XIE Caifeng1,2(
)
Received:
2024-01-25
Revised:
2024-05-13
Online:
2025-03-10
Published:
2025-02-25
Contact:
XIE Caifeng
刘治华1,2(), 赵红葵1,2, 刘禧1,2, 韩美仪1,2, 刘婧1,2, 房韬文1,2, 黄普誉1,2, 甘志权1,2, 谢彩锋1,2(
)
通讯作者:
谢彩锋
作者简介:
刘治华(1999—),男,硕士研究生,研究方向为水资源高值化利用。E-mail:lzh666@st.gxu.edu.cn。
基金资助:
CLC Number:
LIU Zhihua, ZHAO Hongkui, LIU Xi, HAN Meiyi, LIU Jing, FANG Taowen, HUANG Puyu, GAN Zhiquan, XIE Caifeng. Research progress on wastewater treatment technologies of land-based aquaculture[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1053-1063.
刘治华, 赵红葵, 刘禧, 韩美仪, 刘婧, 房韬文, 黄普誉, 甘志权, 谢彩锋. 陆基水产养殖尾水处理技术研究进展[J]. 化工进展, 2025, 44(2): 1053-1063.
技术类型 | 技术推广应用情况 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
BFT | 广泛用于鱼类、虾类养殖 | 改良水质、零水交换、可用作免疫刺激剂、降低饲料成本 | 悬浮物积累 | [ |
微藻生物修复净化法 | 仍以实验室研究为主,未实现产业化应用 | 降低出水污染、减少饲料用量 | 适用范围窄 | [ |
生物反应器净化法 | 用于鱼类工厂化养殖 | 去除NH4+-N、NO3--N效果好 | 成本高、耗时、易堵塞 | [ |
CW净化技术 | 停留于实验研究阶段,未实现产业化应用 | 全面优化水质、控制病原菌数量 | 占地大、耗时、易堵塞、管理困难 | [ |
吸附法 | 处于中试实验阶段 | 操作方便、可吸附有毒物质 | 适用范围窄、再生不足 | [ |
AOP | 以实验室研究为主,未见工业应用报道 | 可降解有机污染物、杀害病原菌 | 成本高、生物相容性差、存在二次污染 | [ |
膜分离技术 | 已成功应用于商业对虾养殖尾水处理 | 无二次污染、高污染物截留率 | 成本高、维护频繁 | [ |
技术类型 | 技术推广应用情况 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
BFT | 广泛用于鱼类、虾类养殖 | 改良水质、零水交换、可用作免疫刺激剂、降低饲料成本 | 悬浮物积累 | [ |
微藻生物修复净化法 | 仍以实验室研究为主,未实现产业化应用 | 降低出水污染、减少饲料用量 | 适用范围窄 | [ |
生物反应器净化法 | 用于鱼类工厂化养殖 | 去除NH4+-N、NO3--N效果好 | 成本高、耗时、易堵塞 | [ |
CW净化技术 | 停留于实验研究阶段,未实现产业化应用 | 全面优化水质、控制病原菌数量 | 占地大、耗时、易堵塞、管理困难 | [ |
吸附法 | 处于中试实验阶段 | 操作方便、可吸附有毒物质 | 适用范围窄、再生不足 | [ |
AOP | 以实验室研究为主,未见工业应用报道 | 可降解有机污染物、杀害病原菌 | 成本高、生物相容性差、存在二次污染 | [ |
膜分离技术 | 已成功应用于商业对虾养殖尾水处理 | 无二次污染、高污染物截留率 | 成本高、维护频繁 | [ |
RAS技术组成 | 养殖物种 | 细菌种类 | 运行时间 | 去除效果 | 参考文献 |
---|---|---|---|---|---|
物理过滤、滴滤器 | 金头鲷 | 硝化细菌 | 14:00~6:00 | NH4+-N:>91% NO3--N:>74% | [ |
物理过滤、流化床生物过滤器 | 鲑鱼 | 硝化细菌+异养细菌 | 5~11min | TAN:86%~88% TP:15%~41% BOD:66%~82% | [ |
物理过滤、浮球式生物滤器、紫外消毒装置、曝气处理 | 宝石鲈 | 硝化细菌+反硝化菌 | 未提及 | NH4+-N:>32% NO2--N:>93% | [ |
物理过滤、木屑生物反应器、曝气处理 | 虹鳟鱼 | 疣微菌门 | 第0~12天 | TAN:70% PO43--P:75% | [ |
过滤装置、上流式污泥床反应器 | 虹鳟鱼 | 反硝化菌 | 第117~148天 | TN:>95% COD:>69% | [ |
RAS技术组成 | 养殖物种 | 细菌种类 | 运行时间 | 去除效果 | 参考文献 |
---|---|---|---|---|---|
物理过滤、滴滤器 | 金头鲷 | 硝化细菌 | 14:00~6:00 | NH4+-N:>91% NO3--N:>74% | [ |
物理过滤、流化床生物过滤器 | 鲑鱼 | 硝化细菌+异养细菌 | 5~11min | TAN:86%~88% TP:15%~41% BOD:66%~82% | [ |
物理过滤、浮球式生物滤器、紫外消毒装置、曝气处理 | 宝石鲈 | 硝化细菌+反硝化菌 | 未提及 | NH4+-N:>32% NO2--N:>93% | [ |
物理过滤、木屑生物反应器、曝气处理 | 虹鳟鱼 | 疣微菌门 | 第0~12天 | TAN:70% PO43--P:75% | [ |
过滤装置、上流式污泥床反应器 | 虹鳟鱼 | 反硝化菌 | 第117~148天 | TN:>95% COD:>69% | [ |
技术类型 | RAS技术组成 | 养殖物种 | 去除效果 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|---|
吸附法 | 物理沉降、吸附法、生物反应器 | 罗非鱼 红鼓鱼 | NH4+-N:>88% | 成本低、 无公害 | 抗干扰差、 适用性窄 | [ |
AOP | 生物反应器、曝气处理、紫外法 | 鲑鱼 | TC:100% | 可杀菌、无公害 | 能耗高 | [ |
膜分离技术 | 物理过滤、生物反应器、紫外法、曝气处理、(亲水性醋酸纤维滤膜)膜分离技术 | 红点鲑 虹鳟鱼 | TP:56.5~99.0% TN:0.1~31.7% TOC:8.6~30% | 易操作、无公害 | 能耗高 | [ |
臭氧-膜-过滤耦合工艺 | 物理过滤、臭氧法、(Ti-Mn/TiO2 /Al2O3陶瓷膜)膜分离技术、(活性炭)吸附法 | 漠斑 牙鲆 | TAN:>62% NO2--N:>95% COD:52.1% TSS:100% | 运营成本低 | 投资成本高 | [ |
技术类型 | RAS技术组成 | 养殖物种 | 去除效果 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|---|
吸附法 | 物理沉降、吸附法、生物反应器 | 罗非鱼 红鼓鱼 | NH4+-N:>88% | 成本低、 无公害 | 抗干扰差、 适用性窄 | [ |
AOP | 生物反应器、曝气处理、紫外法 | 鲑鱼 | TC:100% | 可杀菌、无公害 | 能耗高 | [ |
膜分离技术 | 物理过滤、生物反应器、紫外法、曝气处理、(亲水性醋酸纤维滤膜)膜分离技术 | 红点鲑 虹鳟鱼 | TP:56.5~99.0% TN:0.1~31.7% TOC:8.6~30% | 易操作、无公害 | 能耗高 | [ |
臭氧-膜-过滤耦合工艺 | 物理过滤、臭氧法、(Ti-Mn/TiO2 /Al2O3陶瓷膜)膜分离技术、(活性炭)吸附法 | 漠斑 牙鲆 | TAN:>62% NO2--N:>95% COD:52.1% TSS:100% | 运营成本低 | 投资成本高 | [ |
RAS组成 | 出水品质 | 未经CW处理的RAS出水品质 | 参考文献 |
---|---|---|---|
曝气处理、FWS-CW | TAN:0.07mg/L NO2--N:0.008mg/L NO3--N:0.014mg/L | TAN:0.9mg/L NO2--N:0.1mg/L NO3--N:0.1mg/L | [ |
物理过滤、生物反应器、紫外法、HSF-CW | TAN:0.10mg/L NO2--N:0.00mg/L NO3--N:0.03mg/L | [ | |
物理过滤、FWS-CW+潜流型CW | TAN:0.09mg/L NO2--N:0.004mg/L NO3--N:0.12mg/L | [ |
RAS组成 | 出水品质 | 未经CW处理的RAS出水品质 | 参考文献 |
---|---|---|---|
曝气处理、FWS-CW | TAN:0.07mg/L NO2--N:0.008mg/L NO3--N:0.014mg/L | TAN:0.9mg/L NO2--N:0.1mg/L NO3--N:0.1mg/L | [ |
物理过滤、生物反应器、紫外法、HSF-CW | TAN:0.10mg/L NO2--N:0.00mg/L NO3--N:0.03mg/L | [ | |
物理过滤、FWS-CW+潜流型CW | TAN:0.09mg/L NO2--N:0.004mg/L NO3--N:0.12mg/L | [ |
技术类型 | 尾水种类 | 微生物种类 | 处理效果 | 参考文献 |
---|---|---|---|---|
BFT-微藻生物修复 | 罗非鱼尾水 | 食酸菌和梭菌、绿藻 | TN:95.8% | [ |
BFT-生物反应器 | 模拟养殖尾水 | 硝化细菌 | TAN:95.71% | [ |
BFT-CW | 罗非鱼尾水 | 反硝化细菌 | COD:39% TN:80% TP:74% | [ |
BFT-吸附法 | 罗非鱼尾水 | 异养细菌、自养硝化细菌 | TSS:24.60% PO43--P:7.95% | [ |
技术类型 | 尾水种类 | 微生物种类 | 处理效果 | 参考文献 |
---|---|---|---|---|
BFT-微藻生物修复 | 罗非鱼尾水 | 食酸菌和梭菌、绿藻 | TN:95.8% | [ |
BFT-生物反应器 | 模拟养殖尾水 | 硝化细菌 | TAN:95.71% | [ |
BFT-CW | 罗非鱼尾水 | 反硝化细菌 | COD:39% TN:80% TP:74% | [ |
BFT-吸附法 | 罗非鱼尾水 | 异养细菌、自养硝化细菌 | TSS:24.60% PO43--P:7.95% | [ |
技术类型 | 技术推广应用情况 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
生物反应器的RAS净化法 | 用于商业鲑鱼、鲈鱼等RAS尾水处理 | 出水质量高 | 易堵塞,操作难度大,运行成本高 | [ |
非机械物理化学法RAS净化法 | 集中于初试、中试规模,商业应用少 | 出水质量高,可防控疾病 | 成本高,存在安全隐患 | [ |
CW集成RAS净化法 | 主要为试点研究 | 简化RAS结构,能耗低 | 占地面积大,净化周期长 | [ |
鱼菜共生净化法 | 处于商业化边缘 | 增加经济效益,养殖新鲜水耗量低 | 投资成本高,能耗高 | [ |
固定化菌藻共生系统净化法 | 处于实验室研发阶段 | 处理效率高,能耗低 | 存在二次污染风险,固定化成本高 | [ |
IMTA净化法 | 实现了一定程度产业化 | 处理成本低,可防控疾病 | 启动周期长,操作难度大,缺乏标准化设计 | [ |
基于BFT的集成处理技术 | 正处于起步阶段 | 实现零水交换养殖,饲料成本低,生态友好,操作管理简便 | 技术成熟度低 | [ |
技术类型 | 技术推广应用情况 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
生物反应器的RAS净化法 | 用于商业鲑鱼、鲈鱼等RAS尾水处理 | 出水质量高 | 易堵塞,操作难度大,运行成本高 | [ |
非机械物理化学法RAS净化法 | 集中于初试、中试规模,商业应用少 | 出水质量高,可防控疾病 | 成本高,存在安全隐患 | [ |
CW集成RAS净化法 | 主要为试点研究 | 简化RAS结构,能耗低 | 占地面积大,净化周期长 | [ |
鱼菜共生净化法 | 处于商业化边缘 | 增加经济效益,养殖新鲜水耗量低 | 投资成本高,能耗高 | [ |
固定化菌藻共生系统净化法 | 处于实验室研发阶段 | 处理效率高,能耗低 | 存在二次污染风险,固定化成本高 | [ |
IMTA净化法 | 实现了一定程度产业化 | 处理成本低,可防控疾病 | 启动周期长,操作难度大,缺乏标准化设计 | [ |
基于BFT的集成处理技术 | 正处于起步阶段 | 实现零水交换养殖,饲料成本低,生态友好,操作管理简便 | 技术成熟度低 | [ |
1 | FAO. The state of world fisheries and aquaculture, sustainability in action[EB/OL]. (2020-06-08) [2023-11-17]. . |
2 | FAO. The State of World Fisheries and Aquaculture 2022[EB/OL]. (2022-06-29) [2023-11-17]. . |
3 | 中国水产科学院. 2020年全国渔业统计年鉴[EB/OL]. (2021-03-08) [2023-11-17]. . |
Chinese Academy of Fisheries Sciences. The National Fisheries Statistical Yearbook in 2020[EB/OL]. (2021-03-08) [2023-11-17]. . | |
4 | 农业农村部. 农业部关于加快推进渔业转方式调结构的指导意见[EB/OL]. (2016-05-04) [2023-11-17]. . |
Ministry of Agriculture and Rural Affairs. Guidelines on accelerating the transformation of fishery mode and adjusting its structure issued by the Ministry of Agriculture[EB/OL]. (2016-05-04) [2023-11-17]. . | |
5 | HELDBO J, KLEE P. Rethinking aquaculture to boost resource and production efficiency[C] // HELDBO J, KLEE P. Sea and land-based aquaculture solutions for farming high quality seafood The Rethink Water network and Danish Water Forum White Papers. Copenhagen: Rethink Water Network, 2014: 10-12. |
6 | 董双林. 多维视角下的新时代水产养殖业发展[J]. 水产学报, 2019, 43(1): 105-115. |
DONG Shuanglin. The development of aquaculture in the New Era from a multi-dimensional perspective[J]. Journal of Fisheries of China, 2019, 43(1): 105-115. | |
7 | 卢芳芳, 洪俊明, 尹娟. 缺氧动态膜生物反应器在淡水/海水养殖废水处理中的运行效果[J]. 化工进展, 2011, 30(11): 2545-2548. |
LU Fangfang, HONG Junming, YIN Juan. Study on the operational effect of an anoxic dynamic membrane bioreactor for aquaculture/mariculture wastewater treatment[J]. Chemical Industry and Engineering Progress, 2011, 30(11): 2545-2548. | |
8 | 张怖青, 江兴龙, 郑伟刚. 生物絮团技术在水产养殖中的应用研究[J]. 渔业现代化, 2016, 43(6): 33-38. |
ZHANG Buqing, JIANG Xinglong, ZHENG Weigang. The research progress of biofloc technology in aquaculture[J]. Fishery Modernization, 2016, 43(6): 33-38. | |
9 | LIU Wenchang, XU Bo, TAN Hongxin, et al. Investigating the conversion from nitrifying to denitrifying water-treatment efficiencies of the biofloc biofilter in a recirculating aquaculture system[J]. Aquaculture, 2022, 550: 737817. |
10 | DENG Min, ZHAO Xiaoli, SENBATI Yeerken, et al. Nitrogen removal by heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas sp. DM02: Removal performance, mechanism and immobilized application for real aquaculture wastewater treatment[J]. Bioresource Technology, 2021, 322: 124555. |
11 | ROBLES-PORCHAS Glen Ricardo, Teresa GOLLAS-GALVÁN, Marcel MARTÍNEZ-PORCHAS, et al. The nitrification process for nitrogen removal in biofloc system aquaculture[J]. Reviews in Aquaculture, 2020, 12(4): 2228-2249. |
12 | OGELLO Erick O, OUTA Nicholas O, OBIERO Kevin O, et al. The prospects of biofloc technology (BFT) for sustainable aquaculture development[J]. Scientific African, 2021, 14: e01053. |
13 | Jorge FIGUEROA-ESPINOZA, RIVAS-VEGA Martha Elisa, DE LOS ÁNGELES MARISCAL-LÓPEZ María, et al. Reusing water in a biofloc culture system favors the productive performance of the Nile tilapia (Oreochromis niloticus) without affecting the health status[J]. Aquaculture, 2022, 558: 738363. |
14 | ZHANG Mengyu, PAN Luqing, LIU Liping, et al. Phosphorus and nitrogen removal by a novel phosphate-accumulating organism, Arthrobacter sp. HHEP5 capable of heterotrophic nitrification-aerobic denitrification: Safety assessment, removal characterization, mechanism exploration and wastewater treatment[J]. Bioresource Technology, 2020, 312: 123633. |
15 | 周鹏, 刘鹰, 慕欣廷, 等. 异养硝化-好氧反硝化细菌在海水养殖废水脱氮中的研究进展[J]. 水生态学杂志, 2023, 44(6): 148-157. |
ZHOU Peng, LIU Ying, MU Xinting, et al. Research progress on heterotrophic nitrification-aerobic denitrification bacteria in the denitrification of mariculture wastewater[J]. Journal of Hydroecology, 2023, 44(6): 148-157. | |
16 | REN Lei, GUO Zhenzhao, ZHANG Lele, et al. A novel aerobic denitrifying phosphate-accumulating bacterium efficiently removes phthalic acid ester, total nitrogen and phosphate from municipal wastewater[J]. Journal of Water Process Engineering, 2023, 52: 103532. |
17 | DAI Hongliang, SUN Yang, WAN Dong, et al. Simultaneous denitrification and phosphorus removal: A review on the functional strains and activated sludge processes[J]. Science of the Total Environment, 2022, 835: 155409. |
18 | 宋楚儿, 孟振, 张正, 等. 微藻在水产养殖水质净化中的应用[J]. 浙江海洋大学学报(自然科学版), 2023, 42(4): 330-337. |
SONG Chuer, MENG Zhen, ZHANG Zheng, et al. Application of microalgae in water purification of aquaculture[J]. Journal of Zhejiang Ocean University (Natural Science), 2023, 42(4): 330-337. | |
19 | Hugo MILHAZES-CUNHA, OTERO Ana. Valorisation of aquaculture effluents with microalgae: The integrated multi-trophic aquaculture concept[J]. Algal Research, 2017, 24: 416-424. |
20 | AHMAD ANSARI Faiz, GUPTA Sanjay Kumar, Faizal BUX,eds. Microalgae: A biorefinary approach to the treatment of aquaculture wastewater[M]//GUPTA Sanjay-Kumar, BUX Faizal,eds. Application of microalgae in wastewater treatment. Cham: Springer International Publishing, 2019: 69-83. |
21 | ANDREOTTI Valeria, CHINDRIS Anuta, BRUNDU Gianni, et al. Bioremediation of aquaculture wastewater from Mugil cephalus (Linnaeus, 1758) with different microalgae species[J]. Chemistry and Ecology, 2017, 33(8): 750-761. |
22 | LIU Yang, Junping LYU, FENG Jia, et al. Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(3): 900-910. |
23 | MICHELS Michiel H A, VASKOSKA Mitra, VERMUË Marian H, et al. Growth of Tetraselmis suecica in a tubular photobioreactor on wastewater from a fish farm[J]. Water Research, 2014, 65: 290-296. |
24 | SU Yanyan. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment[J]. Science of the Total Environment, 2021, 762: 144590. |
25 | WHITTON Rachel, OMETTO Francesco, PIDOU Marc, et al. Microalgae for municipal wastewater nutrient remediation: Mechanisms, reactors and outlook for tertiary treatment[J]. Environmental Technology Reviews, 2015, 4(1): 133-148. |
26 | PAUL Diplina, HALL Steven G. Biochar and zeolite as alternative biofilter media for denitrification of aquaculture effluents[J]. Water, 2021, 13(19): 2703. |
27 | WANG Rui, XU Qiang, CHEN Chunlei, et al. Microbial nitrogen removal in synthetic aquaculture wastewater by fixed-bed baffled reactors packed with different biofilm carrier materials[J]. Bioresource Technology, 2021, 331: 125045. |
28 | SHITU Abubakar, ZHU Songming, QI Wanhe, et al. Performance of novel sponge biocarrier in MBBR treating recirculating aquaculture systems wastewater: Microbial community and kinetic study[J]. Journal of Environmental Management, 2020, 275: 111264. |
29 | HUANG Wenli, LI Bing, ZHANG Chao, et al. Effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors[J]. Bioresource Technology, 2015, 179: 187-192. |
30 | LEPINE Christine, CHRISTIANSON Laura, DAVIDSON John, et al. Woodchip bioreactors as treatment for recirculating aquaculture systems’ wastewater: A cost assessment of nitrogen removal[J]. Aquacultural Engineering, 2018, 83: 85-92. |
31 | SCHULZ Carsten, Jörg GELBRECHT, RENNERT Bernhard. Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow[J]. Aquaculture, 2003, 217(1/2/3/4): 207-221. |
32 | SCHULZ C, GELBRECHT J, RENNERT B. Constructed wetlands with free water surface for treatment of aquaculture effluents[J]. Journal of Applied Ichthyology, 2004, 20(1): 64-70. |
33 | LI Bing, JIA Rui, HOU Yiran, et al. The sustainable treatment effect of constructed wetland for the aquaculture effluents from blunt snout bream (megalobrama amblycephala) farm[J]. Water, 2021, 13(23): 3418. |
34 | 吴长胜. 添加不同生物絮团对于人工湿地处理水产养殖尾水的除磷能力的影响[D]. 上海: 上海海洋大学, 2022. |
WU Changsheng. Effects of adding different bioflocs to constructed wetland on its ability to treat phosphate in aquaculture wastewater[D].Shanghai: Shanghai Ocean University, 2022. | |
35 | LIU Shentan, ZHANG Yangchen, FENG Xiaojuan, et al. Current problems and countermeasures of constructed wetland for wastewater treatment: A review[J]. Journal of Water Process Engineering, 2024, 57: 104569. |
36 | TAN Sin-Ying, SETHUPATHI Sumathi, LEONG Kah-Hon, et al. Mechanism and kinetics of low concentration total phosphorus and reactive phosphate recovery from aquaculture wastewater via calcined eggshells[J]. Water, Air, & Soil Pollution, 2022, 233(11): 445. |
37 | KIOUSSIS Dimitri R, WHEATON Fredrick W, KOFINAS Peter. Reactive nitrogen and phosphorus removal from aquaculture wastewater effluents using polymer hydrogels[J]. Aquacultural Engineering, 2000, 23(4): 315-332. |
38 | LIN Xiajing, YANG Aili, HUANG Guohe, et al. Treatment of aquaculture wastewater through chitin/ZnO composite photocatalyst[J]. Water, 2019, 11(2): 310. |
39 | TANGO Martin S, GAGNON Graham A. Impact of ozonation on water quality in marine recirculation systems[J]. Aquacultural Engineering, 2003, 29(3/4): 125-137. |
40 | GOMES Lúcio M, SILVA Jaqueline M, DUARTE José L S, et al. Ecotoxicological evaluation of a fish farming effluent treated by Fenton oxidation and coagulation process[J]. Separation Science and Technology, 2020, 55(16): 2967-2976. |
41 | GORITO Ana M, LADO RIBEIRO Ana R, PEREIRA M Fernando R, et al. Advanced oxidation technologies and constructed wetlands in aquaculture farms: What do we know so far about micropollutant removal?[J]. Environmental Research, 2022, 204: 111955. |
42 | SHAH Maulin P. Advanced oxidation processes for effluent treatment plants[M]//AGRAWAL Komal, VERMA Pradeep. Advanced oxidative processes: An overview of their role in treating various wastewaters. Amsterdam: Elsevier, 2020: 87-102. |
43 | Nora’aini ALI, HANID Nurbaiti Abdul, JUSOH Ahmad. The potential of a polysulfone (PSF) nanofiltration membrane as the end stage treatment technology of aquaculture wastewater[J]. Desalination and Water Treatment, 2011, 32(1/2/3): 242-247. |
44 | TEOH Guang Hui, JAWAD Zeinab Abbas, Boon Seng OOI, et al. Surface-templating of rough interface to efficiently recover aquaculture wastewater using membrane distillation[J]. Desalination, 2022, 522: 115419. |
45 | Ali NORA’AINI, WAHAB MOHAMMAD A, JUSOH Ahmad, et al. Treatment of aquaculture wastewater using ultra-low pressure asymmetric polyethersulfone (PES) membrane[J]. Desalination, 2005, 185(1/2/3): 317-326. |
46 | ZHOU Lei, TAN Soon Huat, AHMAD Abdul Latif, et al. High-flux strategy for electrospun nanofibers in membrane distillation to treat aquaculture wastewater: A review[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(12): 3259-3272. |
47 | Law Yong NG, Ching Yin NG, MAHMOUDI Ebrahim, et al. A review of the management of inflow water, wastewater and water reuse by membrane technology for a sustainable production in shrimp farming[J]. Journal of Water Process Engineering, 2018, 23: 27-44. |
48 | LI Huankai, CHEN Sihua, LIAO Kang, et al. Microalgae biotechnology as a promising pathway to ecofriendly aquaculture: A state-of-the-art review[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(4): 837-852. |
49 | 肖茂华, 李亚杰, 汪小旵, 等. 水产养殖尾水处理技术与装备的研究进展[J]. 南京农业大学学报, 2023, 46(1): 1-13. |
XIAO Maohua, LI Yajie, WANG Xiaochan, et al. Research progress of aquaculture tailwater treatment technology and equipment[J]. Journal of Nanjing Agricultural University, 2023, 46(1): 1-13. | |
50 | HANG PHAM Thi Thu, COCHEVELOU Vincent, KHOA DINH Hoang Dang, et al. Implementation of a constructed wetland for the sustainable treatment of inland shrimp farming water[J]. Journal of Environmental Management, 2021, 279: 111782. |
51 | 王加鹏. 人工湿地净化海水养殖外排水试验研究[D]. 上海: 上海海洋大学, 2014. |
WANG Jiapeng. Experimental study on purifying mariculture wastewater by constructed wetlands[D].Shanghai: Shanghai Ocean University, 2014. | |
52 | LUO Guozhi. Review of waste phosphorus from aquaculture: Source, removal and recovery[J]. Reviews in Aquaculture, 2023, 15(3): 1058-1082. |
53 | AHMAD Abdul Latif, CHIN Jing Yi, MOHD HARUN Mohd Hazarel Zairy, et al. Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review[J]. Journal of Water Process Engineering, 2022, 46: 102553. |
54 | STEVEN Soen, MULYONO Mulyono, YUSTISIA Anita, et al. Perspectives and research direction on polymeric membrane integration for sustainable aquaculture industries[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111691. |
55 | Asha P TOM, JAYAKUMAR Jayalekshmi S, BIJU Minnu, et al. Aquaculture wastewater treatment technologies and their sustainability: A review[J]. Energy Nexus, 2021, 4: 100022. |
56 | Čedomir STEVČIĆ, PULKKINEN Katja, PIRHONEN Juhani. Screening of microalgae and LED grow light spectra for effective removal of dissolved nutrients from cold-water recirculating aquaculture system (RAS) wastewater[J]. Algal Research, 2019, 44: 101681. |
57 | DÍAZ V, IBÁÑEZ R, GÓMEZ P, et al. Kinetics of nitrogen compounds in a commercial marine Recirculating Aquaculture System[J]. Aquacultural Engineering, 2012, 50: 20-27. |
58 | DAVIDSON John, HELWIG Neil, SUMMERFELT Steven T. Fluidized sand biofilters used to remove ammonia, biochemical oxygen demand, total coliform bacteria, and suspended solids from an intensive aquaculture effluent[J]. Aquacultural Engineering, 2008, 39(1): 6-15. |
59 | 孙大川, 罗国芝, 谭洪新, 等. 循环水工厂化养殖系统中浮球式生物滤器在不同工况下的水处理效果[J]. 上海水产大学学报, 2005, 14(4): 390-396. |
SUN Dachuan, LUO Guozhi, TAN Hongxin, et al. Study on the water treatment efficiency of floating bead biological filter under different working conditions based on the recirculating aquaculture system[J]. Journal of Shanghai Fisheries University, 2005, 14(4): 390-396. | |
60 | VON AHNEN Mathis, AALTO Sanni L, Suvi SUURNÄKKI, et al. Salinity affects nitrate removal and microbial composition of denitrifying woodchip bioreactors treating recirculating aquaculture system effluents[J]. Aquaculture, 2019, 504: 182-189. |
61 | SUHR K I, PEDERSEN L F, NIELSEN J L. End-of-pipe single-sludge denitrification in pilot-scale recirculating aquaculture systems[J]. Aquacultural Engineering, 2014, 62: 28-35. |
62 | ASIRI Fahad, CHU Kung-Hui. A novel recirculating aquaculture system for sustainable aquaculture: Enabling wastewater reuse and conversion of waste-to-immune-stimulating fish feed[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 18094-18105. |
63 | GHASEMI Zahra, SOURINEJAD Iman, KAZEMIAN Hossein, et al. Application of zeolites in aquaculture industry: A review[J]. Reviews in Aquaculture, 2018, 10(1): 75-95. |
64 | SHARRER Mark J, SUMMERFELT Steven T, BULLOCK Graham L, et al. Inactivation of bacteria using ultraviolet irradiation in a recirculating salmonid culture system[J]. Aquacultural Engineering, 2005, 33(2): 135-149. |
65 | YANG Ling, ZHOU Hongde, MOCCIA Richard. Membrane filtration coupled with chemical precipitation to treat recirculating aquaculture system effluents[J]. Journal of Environmental Quality, 2006, 35(6): 2419-2424. |
66 | CHEN Shuo, YU Jinqi, WANG Hua, et al. A pilot-scale coupling catalytic ozonation-membrane filtration system for recirculating aquaculture wastewater treatment[J]. Desalination, 2015, 363: 37-43. |
67 | YOGEV Uri, GROSS Amit. Reducing environmental impact of recirculating aquaculture systems by introducing a novel microaerophilic assimilation reactor: Modeling and proof of concept[J]. Journal of Cleaner Production, 2019, 226: 1042-1050. |
68 | MAHMOOD Tariq, ZHANG Jing, ZHANG Guosen. Assessment of constructed wetland in nutrient reduction, in the commercial scale experiment ponds of freshwater prawn macrobrachium rosenbergii[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 96(3): 361-368. |
69 | IDRIS Shaharah Mohd, JONES Paul L, SALZMAN Scott A, et al. Evaluation of the giant reed (Arundo donax) in horizontal subsurface flow wetlands for the treatment of recirculating aquaculture system effluent[J]. Environmental Science and Pollution Research, 2012, 19(4): 1159-1170. |
70 | LIN Yingfeng, JING Shuh-Ren, LEE Der-Yuan. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture[J]. Environmental Pollution, 2003, 123(1): 107-113. |
71 | WANG Chenyu, CHANG Chiayuan, CHIEN Yewhu, et al. The performance of coupling membrane filtration in recirculating aquaponic system for tilapia culture[J]. International Biodeterioration & Biodegradation, 2016, 107: 21-30. |
72 | SIKAWA Daniel C, YAKUPITIYAGE Amararatne. The hydroponic production of lettuce (lactuca sativa L) by using hybrid catfish (clarias macrocephalus × C. gariepinus) pond water: Potentials and constraints[J]. Agricultural Water Management, 2010, 97(9): 1317-1325. |
73 | PALM Harry W, KNAUS Ulrich, APPELBAUM Samuel, et al. Towards commercial aquaponics: A review of systems, designs, scales and nomenclature[J]. Aquaculture International, 2018, 26(3): 813-842. |
74 | 孟睿. 固定化菌-藻体系净化水产养殖废水的研究[D]. 北京: 北京化工大学, 2009. |
MENG Rui. Study on purifying the aquacultural waste water with immobilized bacteria-alga system[D]. Beijing: Beijing University of Chemical Technology, 2009. | |
75 | 王荣昌, 程霞, 曾旭. 污水处理中菌藻共生系统去除污染物机理及其应用进展[J]. 环境科学学报, 2018, 38(1): 13-22. |
WANG Rongchang, CHENG Xia, ZENG Xu. Mechanisms and applications of bacterial-algal symbiotic systems for pollutant removal from wastewater[J]. Acta Scientiae Circumstantiae, 2018, 38(1): 13-22. | |
76 | SUN Xiaoyan, LI Xiaopeng, TANG Shi, et al. A review on algal-bacterial symbiosis system for aquaculture tail water treatment[J]. Science of the Total Environment, 2022, 847: 157620. |
77 | JU Bao, CHEN Lihong, XING Ronglian, et al. A new integrated multi-trophic aquaculture system consisting of Styela clava, microalgae, and Stichopus japonicus [J]. Aquaculture International, 2015, 23(2): 471-497. |
78 | SAMOCHA T M, FRICKER J, ALI A M, et al. Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multi-Trophic Aquaculture (IMTA) system[J]. Aquaculture, 2015, 446: 263-271. |
79 | 赵广学, 刘利平, 李彦, 等. 凡纳滨对虾综合养殖与单养池塘的水质变化及产出效果比较[J]. 江苏农业科学, 2012, 40(10): 202-206. |
ZHAO Guangxue, LIU Liping, LI Yan, et al. Comparison of water quality changes and output effects between comprehensive culture and single culture ponds of Litopenaeus vannamei [J]. Jiangsu Agricultural Sciences, 2012, 40(10): 202-206. | |
80 | 韩枫, 常志强, 高勇, 等. 多营养层次生态养殖模式简析[J]. 水产养殖, 2021, 42(4): 24-30. |
HAN Feng, CHANG Zhiqiang, GAO Yong, et al. Analysis of the integrated multi-trophic aquaculture model[J]. Journal of Aquaculture, 2021, 42(4): 24-30. | |
81 | LI Changwei, LI Jiawei, LIU Gang, et al. Performance and microbial community analysis of Combined Denitrification and Biofloc Technology (CDBFT) system treating nitrogen-rich aquaculture wastewater[J]. Bioresource Technology, 2019, 288: 121582. |
82 | ZHENG Hanwen, LUO Guozhi, ABAKARI Godwin, et al. Effect of seeding biofloc on the nitrification establishment in moving bed biofilm reactor (MBBR)[J]. Aquaculture and Fisheries, 2023, 8(6): 617-625. |
83 | ABAKARI Godwin, LUO Guozhi, MENG Haoyan, et al. The use of biochar in the production of tilapia (Oreochromis niloticus) in a biofloc technology system-BFT[J]. Aquacultural Engineering, 2020, 91: 102123. |
84 | DING Yi, GUO Zhansheng, MEI Junxue, et al. Investigation into the novel microalgae membrane bioreactor with internal circulating fluidized bed for marine aquaculture wastewater treatment[J]. Membranes, 2020, 10(11): 353. |
85 | ZHAO Lin, TANG Jun, XU Yuwei, et al. A vertical-flow constructed wetland-microalgal membrane photobioreactor integrated system for treating high-pollution-load marine aquaculture wastewater: A lab-scale study[J]. Science of the Total Environment, 2024, 919: 170465. |
86 | 李永华. 固定化菌-藻体系净化养殖废水协同作用的研究[D]. 北京: 北京交通大学, 2010. |
LI Yonghua. Study of synergistic interaction of efficient purifying aquaculture wastewater in immobilized bacteria-algal system[D]. Beijing: Beijing Jiaotong University, 2010. | |
87 | KHANJANI Mohammad Hossein, SHARIFINIA Moslem. Biofloc technology as a promising tool to improve aquaculture production[J]. Reviews in Aquaculture, 2020, 12(3): 1836-1850. |
[1] | LI Hongyan, XIE Shuhan, ZHANG Yanru, WANG Yongjing, WANG Yonghao, LYU Yuancai, LIN Chunxiang, LI Xiaojuan. Research progress on the direct regeneration technology for cathode materials from spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5207-5216. |
[2] | YAO Yuan, JING Hongquan, YIN Yuting, QI Shuailiang, WANG Yanyu. HOU Cuihong. Research status and suggestions of yellow hosphorus production technology by thermal processing under peak carbon dioxide emission and carbon neutrality [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2104-2116. |
[3] | LI Chenyang, GUO Feihong, WANG Yun, JIANG Xiaoxiang, ZHANG Houhu. Recovery of waste crystalline silicon photovoltaic panels based on DMPU coupled pyrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5969-5975. |
[4] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[5] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[6] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[7] | CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978. |
[8] | XU Lijie, LIU Haojie, XUE Rui, ZHOU Xiaoli, ZHOU Jie, QIAN Xiujuan, DONG Weiliang, JIANG Min. Interdisciplinary assistance for biological recycling of waste plastics [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5029-5036. |
[9] | CHEN Huan, WAN Kun, NIU Bo, ZHANG Yayun, LONG Donghui. Recent progresses in chemical recycling and upcycling of waste plastics [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1453-1469. |
[10] | WANG Yue, ZHAO Qinfeng, ZHANG Zhanquan, LEI Junwei, HOU Yuandong. Plastic waste recycling by pyrolysis at home and abroad under the background of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1470-1478. |
[11] | HE Shengbao, HUANG Gesheng. The new chemical materials industry and its role in low carbon development [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1634-1644. |
[12] | CAO Limei, QIU Zhaofu, ZHANG Wei, YANG Ji. Pollution and utilization of chemical industry spent catalysts [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5293-5301. |
[13] | WANG Man, XI Xiaoli, WANG Yanan, TANG Kangyao. Research progress and challenges in recycling of typical alloys [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5270-5280. |
[14] | QIU Yuchao, SHI Junjie, YU Bin, XIAO Pan, ZHAO Fei, MA Wenyuan, LI Jianzhong, LIU Changsheng. Review and perspective of vanadium extraction techniques from converter vanadium-bearing slag [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5281-5292. |
[15] | HOU Xuejun, ZHANG Xiaoming, CHENG Wenbo, WANG Xin, WANG Chunxia, XU Shengming, HUANG Guoyong. Research on disposal methods of spent vanadium-titanium-based catalysts [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5313-5324. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 13
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 36
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |