1 |
World Economic Forum, Ellen MacArthur Foundation and McKinsey & Company. The new plastics economy-rethinking the future of plastics[R]. Ellen MacArthur Foundation, 2016.
|
2 |
于海晴, 梁迪隽, 谭全银, 等. 海洋垃圾和微塑料污染问题及其国际进程[J]. 世界环境, 2018(2): 50-53.
|
|
YU Haiqing, LIANG Dijuan, TAN Quanyin, et al. The issues of marine litter and microplastics pollution and relevant international process[J]. World Environment, 2018(2): 50-53
|
3 |
JESWANI H, KRÜGER C, RUSS M, et al. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery[J]. Science of the Total Environment, 2021, 769: 144483.
|
4 |
RONKAY F, MOLNAR B, GERE D, et al. Plastic waste from marine environment: demonstration of possible routes for recycling by different manufacturing technologies[J]. Waste Management, 2021, 119: 101-110.
|
5 |
PlasticsEurope Deutschland E V, Düsseldorf Messe. Plastics-the facts 2019, an analysis of European plastics production, demand and waste data[R]. PlasticsEurope, 2019.
|
6 |
GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782.
|
7 |
陈伟强, 简小枚, 汪鹏, 等. 全球塑料循环体系演化与我国的应对策略[J]. 资源再生, 2020(1): 38-39.
|
|
CHEN Weiqiang, JIAN Xiaomei, WANG Peng, et al. Evolution of global plastic recycling system and China’s countermeasures[J]. Resource Recycling, 2020(1): 38-39.
|
8 |
国家市场监督管理总局, 国家标准化管理委员会. 废塑料回收技术规范: [S]. 北京: 中国标准出版社, 2020.
|
|
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Technical specifications for waste plastic recycling: [S]. Beijing: Standards Press of China, 2020.
|
9 |
ZHANG G H, ZHU J F, OKUWAKI A. Prospect and current status of recycling waste plastics and technology for converting them into oil in China[J]. Resources, Conservation and Recycling, 2007, 50(3): 231-239.
|
10 |
李晓祥, 石炎福, 余华瑞. 废塑料催化裂解制燃料油[J]. 化工环保, 2002, 22(2): 90-94.
|
|
LI Xiaoxiang, SHI Yanfu, YU Huarui. Preparation of fuel oil from plastic waste by catalytic cracking[J]. Environmental Protection of Chemical Industry, 2002, 22(2): 90-94.
|
11 |
AGUADO J, SOTELO J L, SERRANO D P, et al. Catalytic conversion of polyolefins into liquid fuels over MCM-41: comparison with ZSM-5 and amorphous SiO2-Al2O3 [J]. Energy & Fuels, 1997, 11(6): 1225-1231.
|
12 |
CHIKA M. Pyrolysis-catalysis of plastic wastes for production of liquid fuels and chemicals[D]. Leeds: University of Leeds, 2015.
|
13 |
ZHANG F, ZENG M H, YAPPERT R D, et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization[J]. Science, 2020, 370(6515): 437-441.
|
14 |
RORRER Julie E, BECKHAM Gregg T, Yuriy ROMÁN-LESHKOV. Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions[J]. JACS Au, 2020, 1(1): 8-12.
|
15 |
王中慧, 卢欢亮, 陈伟锋, 等. 低值废塑料裂解制备可再生燃料油中试研究[J]. 环境卫生工程, 2020, 28(5): 27-32.
|
|
WANG Zhonghui, LU Huanliang, CHEN Weifeng, et al. Pilot scale on the production of renewable fuel oil from low value plastic waste pyrolysis[J]. Environmental Sanitation Engineering, 2020, 28(5): 27-32.
|
16 |
BUDSAEREECHAI S, HUNT A J, NGERNYEN Y. Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines[J]. RSC Advances, 2019, 9(10): 5844-5857.
|
17 |
SRAKEAW V, YODJAI S, WETWATANA U. Catalytic pyrolysis of LDPE plastic wastes over mortar cement catalyst[J]. Advanced Materials Research, 2014, 931/932: 47-51.
|
18 |
周茜, 李唯一, 王玉忠, 等. 固体酸催化剂对LDPE与PS混合物催化裂解行为的研究[J]. 化学研究与应用, 2004, 16(1): 43-45.
|
|
ZHOU Qian, LI Weiyi, WANG Yuzhong, et al. Catalytic cracking of the mixture of polyethylene and polystyrene over different acid solid catalysts[J]. Chemical Research and Application, 2004, 16(1): 43-45.
|
19 |
张雪, 白雪峰, 赵明. 废塑料热解特性研究[J]. 化学与黏合, 2015, 37(2): 107-110.
|
|
ZHANG Xue, BAI Xuefeng, ZHAO Ming. Study on pyrolysis characteristics of waste plastics[J]. Chemistry and Adhesion, 2015, 37(2): 107-110.
|
20 |
ZHOU L M, WANG Y P, HUANG Q W, et al. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis[J]. Fuel Processing Technology, 2006, 87(11): 963-969.
|
21 |
LÓPEZ A, DE MARCO I, CABALLERO B M, et al. Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor[J]. Chemical Engineering Journal, 2011, 173(1): 62-71.
|
22 |
李稳宏, 李迓红, 秦倩, 等. 废塑料裂化生产汽柴油工业化装置研究[J]. 应用化工, 2002, 31(1): 44-46.
|
|
LI Wenhong, LI Yahong, QIN Qian, et al. Study on industrial apparatus to produce gasoline and diesel by catalytic cracking for waste plastics[J]. Applied Chemical Industry, 2002, 31(1): 44-46.
|
23 |
SINN H, KAMINSKY W, JANNING J. Processing of plastic waste and scrap tires into chemical raw materials, especially by pyrolysis[J]. Angewandte Chemie International Edition, 1976, 15(11): 660-672.
|
24 |
任冬梅, 齐美荣. 废塑料裂解制取燃料油的新型工业装置[J]. 齐鲁石油化工, 2005, 33(3): 173-177.
|
|
REN Dongmei, QI Meirong. Study on industrial plant to produce fuel oil from waste plastics cracking[J]. Qilu Petrochemical Technology, 2005, 33(3): 173-177.
|
25 |
高德忠, 岳坤霞. 废塑料生产汽柴油设备的改进初探[J]. 当代化工, 2003, 32(2): 124-126.
|
|
GAO Dezhong, YUE Kunxia. Improvement of equipments for producing gasoline/diesel from waste plastic[J]. Contemporary Chemical Industry, 2003, 32(2): 124-126.
|
26 |
孙锴, 王琬丽, 黄群星. 典型杂质掺混对废塑料热解油特性的影响[J]. 化工进展, 2021, 40(6): 3499-3506.
|
|
SUN Kai, WANG Wanli, HUANG Qunxing. Effect of typical impurities on the pyrolysis oil of waste plastics[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3499-3506.
|
27 |
张郑磊. 废塑料热解-催化改质实验研究[D]. 北京: 华北电力大学, 2009.
|
|
ZHANG Zhenglei. Research on thermal pyrolysis-catalytic reforming of waste plastic[D]. Beijing: North China Electric Power University, 2009.
|
28 |
史小慧. 造纸厂废塑料裂解制取燃料油的研究[J]. 广东化工, 2020, 47(2): 44-45.
|
|
SHI Xiaohui. The research on pyrolysis of waste plastics in paper mill to produce fuel oil[J]. Guangdong Chemical Industry, 2020, 47(2): 44-45.
|
29 |
李志华, 宋应帅. 螺旋式废塑料电磁裂解反应器的研究与仿真分析[J]. 橡塑技术与装备, 2020, 46(10): 37-40.
|
|
LI Zhihua, SONG Yingshuai. Research and simulation analysis of electromagnetic cracking reaction of spiral waste plastics[J]. China Rubber/Plastics Technology and Equipment, 2020, 46(10): 37-40.
|
30 |
陈晓青, 陈志勇, 李法鸿, 等. 流化床二段法催化裂解废塑料制取燃料[J]. 化学世界, 2002, 43(2): 75-78.
|
|
CHEN Xiaoqing, CHEN Zhiyong, LI Fahong, et al. Fuel oil manufacture from waste plastics by two-staged catalytic degradation on fluidized bed[J]. Chemical World, 2002, 43(2): 75-78.
|
31 |
胡玉莹, 陈海峰, 钟转转. 聚乙烯废塑料流化床裂解炉的设计[J]. 环境工程, 2013, 31(4): 80-84.
|
|
HU Yuying, CHEN Haifeng, ZHONG Zhuanzhuan. Design of fluidized bed reactor to crack waste PE plastics[J]. Environmental Engineering, 2013, 31(4): 80-84.
|
32 |
KAMINSKY W, SCHMIDT H, SIMON C M. Recycling of mixed plastics by pyrolysis in a fluidised bed[J]. Macromolecular Symposia, 2000, 152(1): 191-199.
|
33 |
刘光宇, 栾健, 马晓波, 等. 垃圾废塑料裂解工艺和反应器[J]. 环境工程, 2009, 27(S1): 383-388, 572.
|
|
LIU Guangyu, LUAN Jian, MA Xiaobo, et al. Pyrolysis of MSW plastics: technologies and their reactors[J]. Environmental Engineering, 2009, 27(S1): 383-388, 572.
|
34 |
姬国钊, 张瑜涛, 包津维, 等. 回转窑热解废塑料过程中固体颗粒的运动与传热模拟[J]. 科学通报, 2020, 65(26): 2895-2902.
|
|
JI G Z, ZHANG Y T, BAO J W, et al. The simulation of particle movement and heat transfer in rotary kiln for plastic waste pyrolysis[J]. Chinese Science Bulletin, 2020, 65(26): 2895-2902.
|
35 |
沈祥智, 严建华, 池涌, 等. 聚乙烯在连续给料外热式回转窑内的热解研究[J]. 中国电机工程学报, 2006, 26(16): 126-132.
|
|
SHEN Xiangzhi, YAN Jianhua, CHI Yong, et al. Study on polyethylene pyrolysis in continuous-feeding external-heating rotary kiln[J]. Proceedings of the CSEE, 2006, 26(16): 126-132.
|
36 |
石立军. 济南恒誉环保科技股份有限公司董事长牛斌——高分子废弃物热裂解行业的先进代表[J]. 中国轮胎资源综合利用, 2018(11): 18-19.
|
|
SHI Lijun. Niubin, Chairman of Niutech Environment Technology Corporation—Advanced representative of polymer waste in pyrolysis industry[J]. China Tire Resources Recycling, 2018(11): 18-19.
|
37 |
张东红, 林晓娜, 任夏瑾, 等. 钙对生物质/塑料混合物共热解特性及动力学的影响[J]. 可再生能源, 2021, 39(4): 442-448.
|
|
ZHANG Donghong, LIN Xiaona, REN Xiajin, et al. Effect of calcium on the co-pyrolysis characteristics and kinetics of biomass/plastic mixtures[J]. Renewable Energy Resources, 2021, 39(4): 442-448.
|
38 |
张东红, 任夏瑾, 蔡红珍, 等. 生物质/塑料共催化热解过程中HZSM-5失活分析[J]. 化工进展, 2021, 40(8): 4259-4261.
|
|
ZHANG Donghong, REN Xiajin, CAI Hongzhen, et al. Deactivation of HZSM-5 during the catalytic co-pyrolysis of biomass and plastic[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4259-4231.
|
39 |
XUE Y, BAI X L. Synergistic enhancement of product quality through fast co-pyrolysis of acid pretreated biomass and waste plastic[J]. Energy Conversion and Management, 2018, 164: 629-638.
|
40 |
李希尧. 煤与聚乙烯、聚丙烯的热解及共热解研究[D]. 大连: 大连理工大学, 2008.
|
|
LI Xiyao. Pyrolysis and co-pyrolysis of coal with PE and PP[D]. Dalian: Dalian University of Technology, 2008.
|
41 |
张婷婷, 白宗庆, 侯冉冉, 等. 煤与废塑料共热解特性研究进展[J]. 化工进展, 2021, 40(5): 2461-2470.
|
|
ZHANG Tingting, BAI Zongqing, HOU Ranran, et al. Research progress on co-pyrolysis characteristics of coal and waste plastics[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2461-2470.
|
42 |
周华兰, 魏跃, 宋金文, 等. 混合废塑料与焦化蜡油共催化裂解制取燃料油[J]. 工业催化, 2018, 26(3): 80-84.
|
|
ZHOU Hualan, WEI Yue, SONG Jinwen, et al. Study on catalytic cracking of mixed waste plastics and coker gas oil to fuel oil[J]. Industrial Catalysis, 2018, 26(3): 80-84.
|
43 |
王允圃, 黄燕燕, 戴磊磊, 等. 废植物油脂与废聚乙烯塑料共裂解制备燃油研究[J]. 农业机械学报, 2016, 47(1): 177-181.
|
|
WANG Yunpu, HUANG Yanyan, DAI Leilei, et al. Preparation of fuel from co-pyrolysis of waste vegetable oil and waste polyethylene plastics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 177-181.
|
44 |
胡敏. 铜藻和聚丙烯共裂解制备烃类液体燃料油的研究[D]. 杭州: 浙江工业大学, 2017.
|
|
HU Min. Co-pyrolysis of sargassum horueri and polypropylene for liquid hydrocarbon fuels[D]. Hangzhou: Zhejiang University of Technology, 2017.
|
45 |
郑典模, 卢钱峰, 刘明, 等. 废塑料与废机油共催化裂解制取燃料油的研究[J]. 现代化工, 2011, 31(8): 47-49.
|
|
ZHENG Dianmo, LU Qianfeng, LIU Ming, et al. Study on the catalytic cracking of waste plastics and waste lubricating oil for producing fuel oil[J]. Modern Chemical Industry, 2011, 31(8): 47-49.
|
46 |
RAITANO L. Vitol partners up with Quantafuel to recycle waste plastic into diesel[EB/OL]. (2018-04-25)[2021-04-10]. Diesel-34743291/.
|
47 |
SAEAUNG K, PHUSUNTI N, PHETWAROTAI W, et al. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals[J]. Waste Management, 2021, 127: 101-111.
|
48 |
FRĄCZAK D, SAMARDAKIEWICZ B. Method of production of high-value hydrocarbon products from waste plastics and apparatus for method of production of high-value hydrocarbon products from waste plastics: US9080107[P]. 2015-07-14.
|
49 |
Agilyx opens the‘World’s First’ commercial waste polystyrene-to-styrene oil chemical recycling plant[EB/OL]. (2018-04-24)[2021-04-10]. the-worlds-first-commercial-waste-polystyrene-to-styrene-oil/.
|
50 |
SUCHOPA Robert. Chemical recycling: a viable path towards sustainable products in Czech Republic[C]//The European Refining Technology Conference, 2020.
|
51 |
MAAYUF Sam. Waste? Not. Want? A lot. The future of plastics recycling[C]//The European Refining Technology Conference, 2019.
|
52 |
GUIDETTI Stefania, FRONTEDDU Raffaele, SCAVELLO Francesco. Conversion of plastic waste via slurry hydrogenation technology[C]//European Refining Technology Conference, 2020.
|
53 |
SOMOZA-TORNOS A, GONZALEZ-GARAY A, POZO C, et al. Realizing the potential high benefits of circular economy in the chemical industry: ethylene monomer recovery via polyethylene pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3561-3572.
|
54 |
PERUGINI F, MASTELLONE M L, ARENA U. A life cycle assessment of mechanical and feedstock recycling options for management of plastic packaging wastes[J]. Environmental Progress, 2005, 24(2): 137-154.
|
55 |
HUOVIE Brenna. Closing the loop on plastics recycling[C]//European Refining Technology Conference, 2020.
|
56 |
马占峰, 姜宛君, 杨森. 中国塑料加工工业(2018)[J]. 中国塑料, 2019, 33(6): 127-131, 146.
|
|
MA Zhanfeng, JIANG Wanjun, YANG Sen. China plastics industry (2018)[J]. China Plastics, 2019, 33(6): 127-131, 146.
|
57 |
SPALLINA V, VELARDE I C, JIMENEZ J A M, et al. Techno-economic assessment of different routes for olefins production through the oxidative coupling of methane (OCM): advances in benchmark technologies[J]. Energy Conversion and Management, 2017, 154: 244-261.
|