Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1470-1478.DOI: 10.16085/j.issn.1000-6613.2021-0815
• Chemical processes energy saving and emission reduction • Previous Articles Next Articles
WANG Yue(), ZHAO Qinfeng, ZHANG Zhanquan, LEI Junwei, HOU Yuandong()
Received:
2021-04-18
Revised:
2021-08-30
Online:
2022-03-28
Published:
2022-03-23
Contact:
HOU Yuandong
通讯作者:
侯远东
作者简介:
王月(1990—),女,博士,高级工程师,研究方向为石油炼制。E-mail:CLC Number:
WANG Yue, ZHAO Qinfeng, ZHANG Zhanquan, LEI Junwei, HOU Yuandong. Plastic waste recycling by pyrolysis at home and abroad under the background of carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1470-1478.
王月, 赵秦峰, 张占全, 雷俊伟, 侯远东. 碳中和背景下国内外废塑料裂解法回收进展[J]. 化工进展, 2022, 41(3): 1470-1478.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0815
年份 | 产量/×106t |
---|---|
1950 | 1.5 |
1980 | 60 |
1990 | 105 |
2000 | 187 |
2010 | 265 |
2017 | 348 |
2018 | 359 |
2019 | 400 |
年份 | 产量/×106t |
---|---|
1950 | 1.5 |
1980 | 60 |
1990 | 105 |
2000 | 187 |
2010 | 265 |
2017 | 348 |
2018 | 359 |
2019 | 400 |
国家或地区 | 产量占比/% |
---|---|
北美 | 18 |
拉丁美洲 | 4 |
欧洲 | 17 |
中东、非洲 | 7 |
中亚 | 3 |
中国 | 30 |
日本 | 4 |
其他 | 17 |
国家或地区 | 产量占比/% |
---|---|
北美 | 18 |
拉丁美洲 | 4 |
欧洲 | 17 |
中东、非洲 | 7 |
中亚 | 3 |
中国 | 30 |
日本 | 4 |
其他 | 17 |
原料 | 反应工艺 | 催化剂 | 反应温度/℃ | 反应器 | 产物分布 | 参考文献 |
---|---|---|---|---|---|---|
废塑料袋(PE) | 热裂解-催化改质 | 三氯化铁-钠基膨润土 | 500 | 高压裂解釜-填料式催化反应器 | 80%产油率 | [ |
PS、PP、LDPE、HDPE | 热裂解-催化改质 | 膨润土 | 500 | 反应釜-固定床 | 88%产油率 | [ |
LDPE | 催化裂解 | 水泥砂浆 | 410 | 管式固定床 | 86.7%液收 | [ |
LDPE、PS | 热裂解 | DeLaZSM-5 | 430 | 反应釜 | 82.2%液收 | [ |
PE | 催化氢解 | 钌/碳 | 200 | 反应釜 | 45%液态烷烃收率 | [ |
原料 | 反应工艺 | 催化剂 | 反应温度/℃ | 反应器 | 产物分布 | 参考文献 |
---|---|---|---|---|---|---|
废塑料袋(PE) | 热裂解-催化改质 | 三氯化铁-钠基膨润土 | 500 | 高压裂解釜-填料式催化反应器 | 80%产油率 | [ |
PS、PP、LDPE、HDPE | 热裂解-催化改质 | 膨润土 | 500 | 反应釜-固定床 | 88%产油率 | [ |
LDPE | 催化裂解 | 水泥砂浆 | 410 | 管式固定床 | 86.7%液收 | [ |
LDPE、PS | 热裂解 | DeLaZSM-5 | 430 | 反应釜 | 82.2%液收 | [ |
PE | 催化氢解 | 钌/碳 | 200 | 反应釜 | 45%液态烷烃收率 | [ |
原料 | 反应工艺 | 催化剂 | 反应温度/℃ | 反应器 | 产物分布 | 参考文献 |
---|---|---|---|---|---|---|
聚乙烯、聚丙烯与煤 | 热裂解 | — | 520 | 固定床 | 油产率18.588% | [ |
废聚乙烯与废植物油脂 | 催化裂解 | ZrO2/Al2O3/TiO2 | 430 | 高压反应釜 | 液收65.9% | [ |
聚丙烯与铜藻 | 热裂解 | — | 375 | 裂解釜 | 液收64.79% | [ |
HDPE、LDPE、PP与松木屑 | 热裂解 | — | 300~500 | 热重分析仪 | — | [ |
HDPE与玉米秸秆 | 催化裂解 | HZSM-5 | 550 | 管式炉 | 芳烃82.7% | [ |
废塑料与焦化蜡油 | 催化裂解 | FCC催化剂 | 460 | 常压反应釜 | 液收96.67% | [ |
废塑料与废机油 | 催化裂解 | ZSM-5/50H | 420 | 裂解炉 | 液收89% | [ |
原料 | 反应工艺 | 催化剂 | 反应温度/℃ | 反应器 | 产物分布 | 参考文献 |
---|---|---|---|---|---|---|
聚乙烯、聚丙烯与煤 | 热裂解 | — | 520 | 固定床 | 油产率18.588% | [ |
废聚乙烯与废植物油脂 | 催化裂解 | ZrO2/Al2O3/TiO2 | 430 | 高压反应釜 | 液收65.9% | [ |
聚丙烯与铜藻 | 热裂解 | — | 375 | 裂解釜 | 液收64.79% | [ |
HDPE、LDPE、PP与松木屑 | 热裂解 | — | 300~500 | 热重分析仪 | — | [ |
HDPE与玉米秸秆 | 催化裂解 | HZSM-5 | 550 | 管式炉 | 芳烃82.7% | [ |
废塑料与焦化蜡油 | 催化裂解 | FCC催化剂 | 460 | 常压反应釜 | 液收96.67% | [ |
废塑料与废机油 | 催化裂解 | ZSM-5/50H | 420 | 裂解炉 | 液收89% | [ |
1 | World Economic Forum, Ellen MacArthur Foundation and McKinsey & Company. The new plastics economy-rethinking the future of plastics[R]. Ellen MacArthur Foundation, 2016. |
2 | 于海晴, 梁迪隽, 谭全银, 等. 海洋垃圾和微塑料污染问题及其国际进程[J]. 世界环境, 2018(2): 50-53. |
YU Haiqing, LIANG Dijuan, TAN Quanyin, et al. The issues of marine litter and microplastics pollution and relevant international process[J]. World Environment, 2018(2): 50-53 | |
3 | JESWANI H, KRÜGER C, RUSS M, et al. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery[J]. Science of the Total Environment, 2021, 769: 144483. |
4 | RONKAY F, MOLNAR B, GERE D, et al. Plastic waste from marine environment: demonstration of possible routes for recycling by different manufacturing technologies[J]. Waste Management, 2021, 119: 101-110. |
5 | PlasticsEurope Deutschland E V, Düsseldorf Messe. Plastics-the facts 2019, an analysis of European plastics production, demand and waste data[R]. PlasticsEurope, 2019. |
6 | GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. |
7 | 陈伟强, 简小枚, 汪鹏, 等. 全球塑料循环体系演化与我国的应对策略[J]. 资源再生, 2020(1): 38-39. |
CHEN Weiqiang, JIAN Xiaomei, WANG Peng, et al. Evolution of global plastic recycling system and China’s countermeasures[J]. Resource Recycling, 2020(1): 38-39. | |
8 | 国家市场监督管理总局, 国家标准化管理委员会. 废塑料回收技术规范: [S]. 北京: 中国标准出版社, 2020. |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Technical specifications for waste plastic recycling: [S]. Beijing: Standards Press of China, 2020. | |
9 | ZHANG G H, ZHU J F, OKUWAKI A. Prospect and current status of recycling waste plastics and technology for converting them into oil in China[J]. Resources, Conservation and Recycling, 2007, 50(3): 231-239. |
10 | 李晓祥, 石炎福, 余华瑞. 废塑料催化裂解制燃料油[J]. 化工环保, 2002, 22(2): 90-94. |
LI Xiaoxiang, SHI Yanfu, YU Huarui. Preparation of fuel oil from plastic waste by catalytic cracking[J]. Environmental Protection of Chemical Industry, 2002, 22(2): 90-94. | |
11 | AGUADO J, SOTELO J L, SERRANO D P, et al. Catalytic conversion of polyolefins into liquid fuels over MCM-41: comparison with ZSM-5 and amorphous SiO2-Al2O3 [J]. Energy & Fuels, 1997, 11(6): 1225-1231. |
12 | CHIKA M. Pyrolysis-catalysis of plastic wastes for production of liquid fuels and chemicals[D]. Leeds: University of Leeds, 2015. |
13 | ZHANG F, ZENG M H, YAPPERT R D, et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization[J]. Science, 2020, 370(6515): 437-441. |
14 | RORRER Julie E, BECKHAM Gregg T, Yuriy ROMÁN-LESHKOV. Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions[J]. JACS Au, 2020, 1(1): 8-12. |
15 | 王中慧, 卢欢亮, 陈伟锋, 等. 低值废塑料裂解制备可再生燃料油中试研究[J]. 环境卫生工程, 2020, 28(5): 27-32. |
WANG Zhonghui, LU Huanliang, CHEN Weifeng, et al. Pilot scale on the production of renewable fuel oil from low value plastic waste pyrolysis[J]. Environmental Sanitation Engineering, 2020, 28(5): 27-32. | |
16 | BUDSAEREECHAI S, HUNT A J, NGERNYEN Y. Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines[J]. RSC Advances, 2019, 9(10): 5844-5857. |
17 | SRAKEAW V, YODJAI S, WETWATANA U. Catalytic pyrolysis of LDPE plastic wastes over mortar cement catalyst[J]. Advanced Materials Research, 2014, 931/932: 47-51. |
18 | 周茜, 李唯一, 王玉忠, 等. 固体酸催化剂对LDPE与PS混合物催化裂解行为的研究[J]. 化学研究与应用, 2004, 16(1): 43-45. |
ZHOU Qian, LI Weiyi, WANG Yuzhong, et al. Catalytic cracking of the mixture of polyethylene and polystyrene over different acid solid catalysts[J]. Chemical Research and Application, 2004, 16(1): 43-45. | |
19 | 张雪, 白雪峰, 赵明. 废塑料热解特性研究[J]. 化学与黏合, 2015, 37(2): 107-110. |
ZHANG Xue, BAI Xuefeng, ZHAO Ming. Study on pyrolysis characteristics of waste plastics[J]. Chemistry and Adhesion, 2015, 37(2): 107-110. | |
20 | ZHOU L M, WANG Y P, HUANG Q W, et al. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis[J]. Fuel Processing Technology, 2006, 87(11): 963-969. |
21 | LÓPEZ A, DE MARCO I, CABALLERO B M, et al. Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor[J]. Chemical Engineering Journal, 2011, 173(1): 62-71. |
22 | 李稳宏, 李迓红, 秦倩, 等. 废塑料裂化生产汽柴油工业化装置研究[J]. 应用化工, 2002, 31(1): 44-46. |
LI Wenhong, LI Yahong, QIN Qian, et al. Study on industrial apparatus to produce gasoline and diesel by catalytic cracking for waste plastics[J]. Applied Chemical Industry, 2002, 31(1): 44-46. | |
23 | SINN H, KAMINSKY W, JANNING J. Processing of plastic waste and scrap tires into chemical raw materials, especially by pyrolysis[J]. Angewandte Chemie International Edition, 1976, 15(11): 660-672. |
24 | 任冬梅, 齐美荣. 废塑料裂解制取燃料油的新型工业装置[J]. 齐鲁石油化工, 2005, 33(3): 173-177. |
REN Dongmei, QI Meirong. Study on industrial plant to produce fuel oil from waste plastics cracking[J]. Qilu Petrochemical Technology, 2005, 33(3): 173-177. | |
25 | 高德忠, 岳坤霞. 废塑料生产汽柴油设备的改进初探[J]. 当代化工, 2003, 32(2): 124-126. |
GAO Dezhong, YUE Kunxia. Improvement of equipments for producing gasoline/diesel from waste plastic[J]. Contemporary Chemical Industry, 2003, 32(2): 124-126. | |
26 | 孙锴, 王琬丽, 黄群星. 典型杂质掺混对废塑料热解油特性的影响[J]. 化工进展, 2021, 40(6): 3499-3506. |
SUN Kai, WANG Wanli, HUANG Qunxing. Effect of typical impurities on the pyrolysis oil of waste plastics[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3499-3506. | |
27 | 张郑磊. 废塑料热解-催化改质实验研究[D]. 北京: 华北电力大学, 2009. |
ZHANG Zhenglei. Research on thermal pyrolysis-catalytic reforming of waste plastic[D]. Beijing: North China Electric Power University, 2009. | |
28 | 史小慧. 造纸厂废塑料裂解制取燃料油的研究[J]. 广东化工, 2020, 47(2): 44-45. |
SHI Xiaohui. The research on pyrolysis of waste plastics in paper mill to produce fuel oil[J]. Guangdong Chemical Industry, 2020, 47(2): 44-45. | |
29 | 李志华, 宋应帅. 螺旋式废塑料电磁裂解反应器的研究与仿真分析[J]. 橡塑技术与装备, 2020, 46(10): 37-40. |
LI Zhihua, SONG Yingshuai. Research and simulation analysis of electromagnetic cracking reaction of spiral waste plastics[J]. China Rubber/Plastics Technology and Equipment, 2020, 46(10): 37-40. | |
30 | 陈晓青, 陈志勇, 李法鸿, 等. 流化床二段法催化裂解废塑料制取燃料[J]. 化学世界, 2002, 43(2): 75-78. |
CHEN Xiaoqing, CHEN Zhiyong, LI Fahong, et al. Fuel oil manufacture from waste plastics by two-staged catalytic degradation on fluidized bed[J]. Chemical World, 2002, 43(2): 75-78. | |
31 | 胡玉莹, 陈海峰, 钟转转. 聚乙烯废塑料流化床裂解炉的设计[J]. 环境工程, 2013, 31(4): 80-84. |
HU Yuying, CHEN Haifeng, ZHONG Zhuanzhuan. Design of fluidized bed reactor to crack waste PE plastics[J]. Environmental Engineering, 2013, 31(4): 80-84. | |
32 | KAMINSKY W, SCHMIDT H, SIMON C M. Recycling of mixed plastics by pyrolysis in a fluidised bed[J]. Macromolecular Symposia, 2000, 152(1): 191-199. |
33 | 刘光宇, 栾健, 马晓波, 等. 垃圾废塑料裂解工艺和反应器[J]. 环境工程, 2009, 27(S1): 383-388, 572. |
LIU Guangyu, LUAN Jian, MA Xiaobo, et al. Pyrolysis of MSW plastics: technologies and their reactors[J]. Environmental Engineering, 2009, 27(S1): 383-388, 572. | |
34 | 姬国钊, 张瑜涛, 包津维, 等. 回转窑热解废塑料过程中固体颗粒的运动与传热模拟[J]. 科学通报, 2020, 65(26): 2895-2902. |
JI G Z, ZHANG Y T, BAO J W, et al. The simulation of particle movement and heat transfer in rotary kiln for plastic waste pyrolysis[J]. Chinese Science Bulletin, 2020, 65(26): 2895-2902. | |
35 | 沈祥智, 严建华, 池涌, 等. 聚乙烯在连续给料外热式回转窑内的热解研究[J]. 中国电机工程学报, 2006, 26(16): 126-132. |
SHEN Xiangzhi, YAN Jianhua, CHI Yong, et al. Study on polyethylene pyrolysis in continuous-feeding external-heating rotary kiln[J]. Proceedings of the CSEE, 2006, 26(16): 126-132. | |
36 | 石立军. 济南恒誉环保科技股份有限公司董事长牛斌——高分子废弃物热裂解行业的先进代表[J]. 中国轮胎资源综合利用, 2018(11): 18-19. |
SHI Lijun. Niubin, Chairman of Niutech Environment Technology Corporation—Advanced representative of polymer waste in pyrolysis industry[J]. China Tire Resources Recycling, 2018(11): 18-19. | |
37 | 张东红, 林晓娜, 任夏瑾, 等. 钙对生物质/塑料混合物共热解特性及动力学的影响[J]. 可再生能源, 2021, 39(4): 442-448. |
ZHANG Donghong, LIN Xiaona, REN Xiajin, et al. Effect of calcium on the co-pyrolysis characteristics and kinetics of biomass/plastic mixtures[J]. Renewable Energy Resources, 2021, 39(4): 442-448. | |
38 | 张东红, 任夏瑾, 蔡红珍, 等. 生物质/塑料共催化热解过程中HZSM-5失活分析[J]. 化工进展, 2021, 40(8): 4259-4261. |
ZHANG Donghong, REN Xiajin, CAI Hongzhen, et al. Deactivation of HZSM-5 during the catalytic co-pyrolysis of biomass and plastic[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4259-4231. | |
39 | XUE Y, BAI X L. Synergistic enhancement of product quality through fast co-pyrolysis of acid pretreated biomass and waste plastic[J]. Energy Conversion and Management, 2018, 164: 629-638. |
40 | 李希尧. 煤与聚乙烯、聚丙烯的热解及共热解研究[D]. 大连: 大连理工大学, 2008. |
LI Xiyao. Pyrolysis and co-pyrolysis of coal with PE and PP[D]. Dalian: Dalian University of Technology, 2008. | |
41 | 张婷婷, 白宗庆, 侯冉冉, 等. 煤与废塑料共热解特性研究进展[J]. 化工进展, 2021, 40(5): 2461-2470. |
ZHANG Tingting, BAI Zongqing, HOU Ranran, et al. Research progress on co-pyrolysis characteristics of coal and waste plastics[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2461-2470. | |
42 | 周华兰, 魏跃, 宋金文, 等. 混合废塑料与焦化蜡油共催化裂解制取燃料油[J]. 工业催化, 2018, 26(3): 80-84. |
ZHOU Hualan, WEI Yue, SONG Jinwen, et al. Study on catalytic cracking of mixed waste plastics and coker gas oil to fuel oil[J]. Industrial Catalysis, 2018, 26(3): 80-84. | |
43 | 王允圃, 黄燕燕, 戴磊磊, 等. 废植物油脂与废聚乙烯塑料共裂解制备燃油研究[J]. 农业机械学报, 2016, 47(1): 177-181. |
WANG Yunpu, HUANG Yanyan, DAI Leilei, et al. Preparation of fuel from co-pyrolysis of waste vegetable oil and waste polyethylene plastics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 177-181. | |
44 | 胡敏. 铜藻和聚丙烯共裂解制备烃类液体燃料油的研究[D]. 杭州: 浙江工业大学, 2017. |
HU Min. Co-pyrolysis of sargassum horueri and polypropylene for liquid hydrocarbon fuels[D]. Hangzhou: Zhejiang University of Technology, 2017. | |
45 | 郑典模, 卢钱峰, 刘明, 等. 废塑料与废机油共催化裂解制取燃料油的研究[J]. 现代化工, 2011, 31(8): 47-49. |
ZHENG Dianmo, LU Qianfeng, LIU Ming, et al. Study on the catalytic cracking of waste plastics and waste lubricating oil for producing fuel oil[J]. Modern Chemical Industry, 2011, 31(8): 47-49. | |
46 | RAITANO L. Vitol partners up with Quantafuel to recycle waste plastic into diesel[EB/OL]. (2018-04-25)[2021-04-10]. Diesel-34743291/. |
47 | SAEAUNG K, PHUSUNTI N, PHETWAROTAI W, et al. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals[J]. Waste Management, 2021, 127: 101-111. |
48 | FRĄCZAK D, SAMARDAKIEWICZ B. Method of production of high-value hydrocarbon products from waste plastics and apparatus for method of production of high-value hydrocarbon products from waste plastics: US9080107[P]. 2015-07-14. |
49 | Agilyx opens the‘World’s First’ commercial waste polystyrene-to-styrene oil chemical recycling plant[EB/OL]. (2018-04-24)[2021-04-10]. the-worlds-first-commercial-waste-polystyrene-to-styrene-oil/. |
50 | SUCHOPA Robert. Chemical recycling: a viable path towards sustainable products in Czech Republic[C]//The European Refining Technology Conference, 2020. |
51 | MAAYUF Sam. Waste? Not. Want? A lot. The future of plastics recycling[C]//The European Refining Technology Conference, 2019. |
52 | GUIDETTI Stefania, FRONTEDDU Raffaele, SCAVELLO Francesco. Conversion of plastic waste via slurry hydrogenation technology[C]//European Refining Technology Conference, 2020. |
53 | SOMOZA-TORNOS A, GONZALEZ-GARAY A, POZO C, et al. Realizing the potential high benefits of circular economy in the chemical industry: ethylene monomer recovery via polyethylene pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3561-3572. |
54 | PERUGINI F, MASTELLONE M L, ARENA U. A life cycle assessment of mechanical and feedstock recycling options for management of plastic packaging wastes[J]. Environmental Progress, 2005, 24(2): 137-154. |
55 | HUOVIE Brenna. Closing the loop on plastics recycling[C]//European Refining Technology Conference, 2020. |
56 | 马占峰, 姜宛君, 杨森. 中国塑料加工工业(2018)[J]. 中国塑料, 2019, 33(6): 127-131, 146. |
MA Zhanfeng, JIANG Wanjun, YANG Sen. China plastics industry (2018)[J]. China Plastics, 2019, 33(6): 127-131, 146. | |
57 | SPALLINA V, VELARDE I C, JIMENEZ J A M, et al. Techno-economic assessment of different routes for olefins production through the oxidative coupling of methane (OCM): advances in benchmark technologies[J]. Energy Conversion and Management, 2017, 154: 244-261. |
[1] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[2] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[3] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[4] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[5] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[6] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[7] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[8] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[9] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[10] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[11] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[12] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[13] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[14] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[15] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |