Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 809-819.DOI: 10.16085/j.issn.1000-6613.2024-0198

• Industrial catalysis • Previous Articles     Next Articles

Present situation and strategy of electrolytes for electrochemical nitrogen reduction to ammonia

ZHANG Xiaofang(), GAN Wen, JI Zhijiao, XU Ming, LI Chufu, HE Guangli   

  1. Beijing Low Carbon and Clean Energy Institute, Beijing 102200, China
  • Received:2024-01-26 Revised:2024-03-26 Online:2025-03-10 Published:2025-02-25
  • Contact: ZHANG Xiaofang

电化学氮还原合成氨电解质利用现状与调控策略

张晓方(), 甘汶, 纪之骄, 许明, 李初福, 何广利   

  1. 北京低碳清洁能源研究院,北京 102200
  • 通讯作者: 张晓方
  • 作者简介:张晓方(1983—),女,硕士,高级工程师,研究方向为清洁能源利用、电化学合成氨。E-mail:xiaofang.zhang.h@chnenergy.com.cn

Abstract:

Electrochemical nitrogen reduction to ammonia is the most promising frontier technology that is expected to replace the traditional Haber-Bosch ammonia synthesis process in the future. It enables decentralized production and flexible application of renewable energy sources. Due to the stable chemical properties of nitrogen and the competitive hydrogen evolution reaction (HER) in the catalytic process, the efficiency of electrochemical nitrogen reduction is still very low, and there is still a long way to achieve industrialization. Electrolyte environment is one of the effective ways to improve the efficiency. Starting from the electrochemical reaction environment, it summarizes the types of electrolytes, application status and optimization strategies, compares the influence of electrolyte types on the efficiency of electrochemical nitrogen reduction to ammonia. The efficiency in different electrolytes is quite different, but there is still no qualitative breakthrough, and the ammonia production rate of electrochemical nitrogen reduction cannot meet the industrial requirements. From regulatory strategy, the development of electrolytes with high N2 solubility is an effective way to improve the reaction rate. By regulating the electrolyte proton concentration and further studying the catalytic coordinated interface reaction to further inhibit the hydrogen evolution competitive reaction, the efficiency of electrochemical nitrogen reduction will be greatly improved, and the industrialization process of this technology will be promoted.

Key words: electrochemistry, ammonia synthesis, electrolytes, interface

摘要:

电化学氮还原合成氨是未来有望替代传统Haber-Bosch合成氨工艺最有潜力的前沿技术,能够实现分散式生产,并可以灵活应用可再生能源。受限于N2稳定的化学性质以及催化过程中存在的竞争性析氢反应(HER),电化学氮还原合成氨效率还很低,距离工业化还有很长的路要走。电解质环境是提高效率的有效手段之一,本文从电化学反应环境出发,综述了电解质种类、应用现状以及优化策略,对比了电解质种类对电化学氮还原合成氨效率的影响。不同电解质的效率有较大区别,但仍然无法达到工业化要求。从调控策略出发,开发高N2溶解度的电解质是提高反应速率的有效手段,通过调控电解质质子浓度、深入研究催化协同的界面反应进一步抑制析氢竞争反应,将大幅提升电化学氮还原合成氨效率,推动该技术的工业化进程。

关键词: 电化学, 合成氨, 电解质, 界面

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd