Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 4212-4222.DOI: 10.16085/j.issn.1000-6613.2024-0742
• Resources and environmental engineering • Previous Articles
MA Bingrui1(
), DUAN Xuebin1, CHEN Cheng1, WANG Songxue1, CHEN Lin2, WANG Shoucheng2, LI Jincheng1, WU Guizhi1, YAN Boyin1(
)
Received:2024-05-06
Revised:2024-09-04
Online:2025-08-04
Published:2025-07-25
Contact:
YAN Boyin
马丙瑞1(
), 段学斌1, 陈澄1, 王松雪1, 陈琳2, 王守成2, 李金成1, 武桂芝1, 闫博引1(
)
通讯作者:
闫博引
作者简介:马丙瑞(1992—),男,博士,副教授,研究方向为高级氧化技术在水处理中的应用。E-mail:mabingrui@qut.edu.cn。
基金资助:CLC Number:
MA Bingrui, DUAN Xuebin, CHEN Cheng, WANG Songxue, CHEN Lin, WANG Shoucheng, LI Jincheng, WU Guizhi, YAN Boyin. Kinetics and role of active chlorine species in the degradation of carbamazepine by UV combined with chlorine[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4212-4222.
马丙瑞, 段学斌, 陈澄, 王松雪, 陈琳, 王守成, 李金成, 武桂芝, 闫博引. UV-氯联用降解卡马西平动力学及活性氯物种的功能[J]. 化工进展, 2025, 44(7): 4212-4222.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0742
| 编号 | 反应 | k/L·mol-1·s-1 | 编号 | 反应 | k /L·mol-1·s-1 |
|---|---|---|---|---|---|
| 1 | HClO | ε=59L/(mol·cm) φ=1.45L/(mol·Einstein①) | 18 | k18=5.4×108 | |
| 19 | O·-+H2O | k19=1.8×106 | |||
| 2 | ClO- | ε=66L/(mol·cm) φ=0.97L/(mol·Einstein①) | 20 | ClOH·- | k20=6.1×109s-1 |
| 21 | ClOH·- | k21=23s-1 | |||
| 3 | HClO | pKa=7.5 | 22 | ClOH·-+H+ | k22=2.1×1010 |
| 4 | OH+Cl- | k4=4.3×109 | 23 | ClOH·-+Cl- | k23=1.0×105 |
| 5 | ·OH+OH- | k5=1.3×1010 | 24 | ·OH+CBZ | k24=8.2×109 |
| 6 | ·OH+HOCl | k6=2.0×109 | 25 | Cl·+CBZ | k25=3.3×1010 |
| 7 | ·OH+OCl | k7=8.8×109 | 26 | ClO·+CBZ | k26=7.7×108 |
| 8 | Cl·+HOCl | k8=3.0×109 | 27 | k27=9.8×107 | |
| 9 | Cl·+OCl- | k9=8.2×109 | 28 | ·OH+HCO | k28=8.5×106 |
| 10 | Cl·+Cl· | k10=1.0×108 | 29 | Cl·+HCO | k29=2.2×108 |
| 11 | Cl·+Cl- | k11=6.5×109 | 30 | k30=8.0×107 | |
| 12 | Cl·+OH- | k12=1.8×1010 | 31 | Cl3·-+CBZ | k31=6.6×106 |
| 13 | ClO·+ClO· | k13=2.5×109 | 32 | ·OH+NOM | k32=2.5×104L/(mgC·s) |
| 14 | 2ClO·+OH- | k14=2.5×109 | 33 | Cl·+CBZ | k33=1.3×108 |
| 15 | ClO·+·OH | k15=1.0×109 | 34 | ClO·+NOM | k34=4.6×104L/(mgC·s) |
| 16 | k16=1.1×105s-1 | 35 | OH+H2PO4- | k35=2×104 | |
| 17 | k17=4.5×107 | 36 | ·OH+HCO42- | k36=1.5×105 |
| 编号 | 反应 | k/L·mol-1·s-1 | 编号 | 反应 | k /L·mol-1·s-1 |
|---|---|---|---|---|---|
| 1 | HClO | ε=59L/(mol·cm) φ=1.45L/(mol·Einstein①) | 18 | k18=5.4×108 | |
| 19 | O·-+H2O | k19=1.8×106 | |||
| 2 | ClO- | ε=66L/(mol·cm) φ=0.97L/(mol·Einstein①) | 20 | ClOH·- | k20=6.1×109s-1 |
| 21 | ClOH·- | k21=23s-1 | |||
| 3 | HClO | pKa=7.5 | 22 | ClOH·-+H+ | k22=2.1×1010 |
| 4 | OH+Cl- | k4=4.3×109 | 23 | ClOH·-+Cl- | k23=1.0×105 |
| 5 | ·OH+OH- | k5=1.3×1010 | 24 | ·OH+CBZ | k24=8.2×109 |
| 6 | ·OH+HOCl | k6=2.0×109 | 25 | Cl·+CBZ | k25=3.3×1010 |
| 7 | ·OH+OCl | k7=8.8×109 | 26 | ClO·+CBZ | k26=7.7×108 |
| 8 | Cl·+HOCl | k8=3.0×109 | 27 | k27=9.8×107 | |
| 9 | Cl·+OCl- | k9=8.2×109 | 28 | ·OH+HCO | k28=8.5×106 |
| 10 | Cl·+Cl· | k10=1.0×108 | 29 | Cl·+HCO | k29=2.2×108 |
| 11 | Cl·+Cl- | k11=6.5×109 | 30 | k30=8.0×107 | |
| 12 | Cl·+OH- | k12=1.8×1010 | 31 | Cl3·-+CBZ | k31=6.6×106 |
| 13 | ClO·+ClO· | k13=2.5×109 | 32 | ·OH+NOM | k32=2.5×104L/(mgC·s) |
| 14 | 2ClO·+OH- | k14=2.5×109 | 33 | Cl·+CBZ | k33=1.3×108 |
| 15 | ClO·+·OH | k15=1.0×109 | 34 | ClO·+NOM | k34=4.6×104L/(mgC·s) |
| 16 | k16=1.1×105s-1 | 35 | OH+H2PO4- | k35=2×104 | |
| 17 | k17=4.5×107 | 36 | ·OH+HCO42- | k36=1.5×105 |
| [1] | WANG Huan, XI Hao, XU Linling, et al. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: A review[J]. Science of the Total Environment, 2021, 788: 147819. |
| [2] | REN Bo, SHI Xuan, JIN Xin, et al. Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in urban sewers: Degradation, intermediate products and environmental risk[J]. Chemical Engineering Journal, 2021, 404: 127024. |
| [3] | GWOREK Barbara, Marta KIJEŃSKA, WRZOSEK Justyna, et al. Pharmaceuticals in the soil and plant environment: A review[J]. Water, Air, & Soil Pollution, 2021, 232(4): 145. |
| [4] | SCHAPIRA Michael, MANOR Orly, GOLAN Naama, et al. Involuntary human exposure to carbamazepine: A cross-sectional study of correlates across the lifespan and dietary spectrum[J]. Environment International, 2020, 143: 105951. |
| [5] | DE LAURENTIIS Elisa, CHIRON Serge, Sofia KOURAS-HADEF, et al. Photochemical fate of carbamazepine in surface freshwaters: Laboratory measures and modeling[J]. Environmental Science & Technology, 2012, 46(15): 8164-8173. |
| [6] | MIKLOS David B, REMY Christian, JEKEL Martin, et al. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review[J]. Water Research, 2018, 139: 118-131. |
| [7] | DHAWLE Rebecca, MANTZAVINOS Dionissios, LIANOS Panagiotis. UV/H2O2 degradation of diclofenac in a photocatalytic fuel cell[J]. Applied Catalysis B: Environmental, 2021, 299: 120706. |
| [8] | YAN Boyin, WANG Songxue, LIU Zhiquan, et al. Degradation mechanisms of cyanobacteria neurotoxin β-N-methylamino-l-alanine (BMAA) during UV254/H2O2 process: Kinetics and pathways[J]. Chemosphere, 2022, 302: 134939. |
| [9] | PARK Jeong-Ann, YANG Boram, JANG Mi, et al. Oxidation and molecular properties of microcystin-LR, microcystin-RR and anatoxin-a using UV-light-emitting diodes at 255nm in combination with H2O2 [J]. Chemical Engineering Journal, 2019, 366: 423-432. |
| [10] | ROSARIO-ORTIZ Fernando L, WERT Eric C, SNYDER Shane A. Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater[J]. Water Research, 2010, 44(5): 1440-1448. |
| [11] | WANG Liping, YE Chengsong, GUO Lizheng, et al. Assessment of the UV/chlorine process in the disinfection of Pseudomonas aeruginosa: Efficiency and mechanism[J]. Environmental Science & Technology, 2021, 55(13): 9221-9230. |
| [12] | LEI Yu, CHENG Shuangshuang, LUO Na, et al. Rate constants and mechanisms of the reactions of Cl· and Cl2 ·- with trace organic contaminants[J]. Environmental Science & Technology, 2019, 53(19): 11170-11182. |
| [13] | ALFASSI Zeev B, HUIE Robert E, MOSSERI S, et al. Kinetics of one-electron oxidation by the ClO radical[J]. International Journal of Radiation Applications and Instrumentation Part C Radiation Physics and Chemistry, 1988, 32(1): 85-88. |
| [14] | 闫博引, 韩春宇, 夏晶晶, 等. UV/H2O2和UV/NaClO工艺降解吉非罗齐的比较[J]. 化工进展, 2023, 42(11): 6102-6112. |
| YAN Boyin, HAN Chunyu, XIA Jingjing, et al. Comparative investigation of gemfibrozil degradation by UV/H2O2 and UV/NaClO processes[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 6102-6112. | |
| [15] | GUO Kaiheng, WU Zihao, SHANG Chii, et al. Radical chemistry and structural relationships of PPCP degradation by UV/chlorine treatment in simulated drinking water[J]. Environmental Science & Technology, 2017, 51(18): 10431-10439. |
| [16] | LI Boqiang, MA Xiaoyan, LI Qingsong, et al. Factor affecting the role of radicals contribution at different wavelengths, degradation pathways and toxicity during UV-LED/chlorine process[J]. Chemical Engineering Journal, 2020, 392: 124552. |
| [17] | WU Zihao, GUO Kaiheng, FANG Jingyun, et al. Factors affecting the roles of reactive species in the degradation of micropollutants by the UV/chlorine process[J]. Water Research, 2017, 126: 351-360. |
| [18] | RATTANAKUL Surapong, OGUMA Kumiko. Analysis of hydroxyl radicals and inactivation mechanisms of bacteriophage MS2 in response to a simultaneous application of UV and chlorine[J]. Environmental Science & Technology, 2017, 51(1): 455-462. |
| [19] | ZHAN Lumeng, LI Wentao, LIU Li, et al. Degradation of micropolluants in flow-through VUV/UV/H2O2 reactors: Effects of H2O2 dosage and reactor internal diameter[J]. Journal of Environmental Sciences, 2021, 110: 28-37. |
| [20] | SHEN Yun, XIAO Shaoze, LIU Tongcai, et al. Structural dependent degradation of histamine H2-receptor antagonists by UV/NH2Cl: Reactive species contribution and the role of carbonate ions on ·NO generation[J]. Chemical Engineering Journal, 2024, 479: 147278. |
| [21] | LIU Huaying, HOU Zhichao, LI Yingjie, et al. Modeling degradation kinetics of gemfibrozil and naproxen in the UV/chlorine system: Roles of reactive species and effects of water matrix[J]. Water Research, 2021, 202: 117445. |
| [22] | TAN Chaoqun, GAO Naiyun, DENG Yang, et al. Degradation of antipyrine by UV, UV/H2O2 and UV/PS[J]. Journal of Hazardous Materials, 2013, 260: 1008-1016. |
| [23] | WANG Wenlong, WU Qianyuan, HUANG Nan, et al. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species[J]. Water Research, 2016, 98: 190-198. |
| [24] | FANG Jingyun, FU Yun, SHANG Chii. The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J]. Environmental Science & Technology, 2014, 48(3): 1859-1868. |
| [25] | TUFAIL Arbab, Jawad AL-RIFAI, PRICE William E, et al. Elucidating the performance of UV-based photochemical processes for the removal of trace organic contaminants: Degradation and toxicity evaluation[J]. Chemosphere, 2024, 350: 140978. |
| [26] | So-Yeon TAK, KIM Moon-Kyung, LEE Jung-Eun, et al. Degradation mechanism of anatoxin-a in UV-C/H2O2 reaction[J]. Chemical Engineering Journal, 2018, 334: 1016-1022. |
| [27] | SHAH Noor S, HE Xuexiang, KHAN Hasan M, et al. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: A comparative study[J]. Journal of Hazardous Materials, 2013, 263: 584-592. |
| [28] | HUANG Ying, YAO Jiani, REN Jiaqi, et al. The efficient abatement of contaminants of emerging concern by LED-UV275nm/electrochemical chlorine for wastewater reuse: Kinetics, degradation pathways, and cytotoxicity[J]. Chemical Engineering Journal, 2024, 480: 148032. |
| [29] | GREBEL Janel E, PIGNATELLO Joseph J, MITCH William A. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters[J]. Environmental Science & Technology, 2010, 44(17): 6822-6828. |
| [30] | WANG Lei, CHEN Minjie, CAI Anhong, et al. UV-LED-driven photocatalytic chlorine activation with typical spinel ferrites for carbamazepine degradation: Critical role of superoxide radicals, disinfection by-product formation and toxicity evaluation[J]. Separation and Purification Technology, 2023, 324: 124510. |
| [31] | LI Guang, XIE Zhihao, LIANG Yuxin, et al. Deep insight into the effect of bicarbonate on pollutant abatement in the UV/chlorine process[J]. Chemical Engineering Journal, 2024, 481: 148624. |
| [32] | WANG Anna, ZHU Benzhan, HUANG Chunhua, et al. Generation mechanism of singlet oxygen from the interaction of peroxymonosulfate and chloride in aqueous systems[J]. Water Research, 2023, 235: 119904. |
| [33] | YIN Haoran, ZHANG Qizhan, JING Jiana, et al. An efficient Fe2+ assisted UV/electrogenerated-chlorine process for carbamazepine degradation: The role of Fe(Ⅳ)[J]. Chemosphere, 2022, 307: 136168. |
| [34] | WU Zelin, XIONG Zhaokun, LIU Rui, et al. Pivotal roles of N-doped carbon shell and hollow structure in nanoreactor with spatial confined Co species in peroxymonosulfate activation: Obstructing metal leaching and enhancing catalytic stability[J]. Journal of Hazardous Materials, 2022, 427: 128204. |
| [35] | ZHANG Wei, LI Mu, LIN Lin, et al. Peroxyacetic acid activation by cobalt-doped peanut shell biochar for efficient CBZ degradation: Role of organic radicals, singlet oxygen, and high-valent cobalt species[J]. Separation and Purification Technology, 2024, 330: 125592. |
| [1] | LUO Siling, AI Jianping, LI Wenkui, WANG Yi, CHENG Lihong, WAN Yun, HUANG Long, LI Xibao. Research progress on degradation of typical antibiotics by advanced oxidation processes [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4169-4189. |
| [2] | YANG Qun, LI Hongyan, ZHANG Feng, MAO Libo, CUI Jiali, DONG Yinghong, GUO Zirui. Removal of gatifloxacin from water by cobalt-nitrogen co-doped mushroom stick biological carbon activated PMS [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1088-1099. |
| [3] | ZHANG Xi, LI Haoxin, ZHANG Tianyang, LI Zifu, SUN Wenjun, AO Xiuwei. Degradation of per- and polyfluoroalkyl substances in water by UV-based advanced oxidation or advanced reduction processes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4587-4600. |
| [4] | HE Yixue, QIN Xianchao, MA Weifang. Research progress on in situ remediation of halogenated hydrocarbon contamination in groundwater by persulfate-based advanced oxidation process [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4072-4088. |
| [5] | ZHOU Tianhong, WANG Jinyi, SU Xu, ZENG Honglin, ZHAI Tianjiao. Research progress on advanced oxidation degradation of organic pollutants in water based on spinel type CoFe2O4 [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6412-6427. |
| [6] | ZHENG Ying, LI Xun, LI Zebing, GAO Zhe, ZHAO Chun. Research progress in enhancing the efficiency of piezoelectric catalytic degradation of organic pollutants from water [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5723-5733. |
| [7] | SUN Qianqian, LIU Zhen, LI Rui, ZHANG Xi, YANG Mingde, WU Yulong. Low temperature hydrothermal coupling of ferrous ion activated persulfate to improve the dewatering performance of waste activated sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 595-602. |
| [8] | YAN Boyin, HAN Chunyu, XIA Jingjing, WANG Songxue, WU Guizhi, XIA Wenxiang, LI Jincheng. Comparative investigation of gemfibrozil degradation by UV/H2O2 and UV/NaClO processes [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 6102-6112. |
| [9] | YI Xuenong, LI Jingmei, GAO Yuqiong. Oxidative degradation of naproxen in water by UV-Fe(Ⅵ) process [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4562-4570. |
| [10] | DUAN Yi, ZOU Ye, ZHOU Shukui, YANG Liu. Progress in the degradation of organic pollutants by H2O2/PMS/PDS activated by transition metal single-atom catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4147-4158. |
| [11] | LIAO Bing, XU Wen, YE Qiuyue. A review of activated percarbonate and peroxymonocarbonate in the field of water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3235-3248. |
| [12] | ZHANG Xuan, SONG Xiaosan, ZHAO Po, DONG Yuanhua, LIU Yun. A critical review of advanced oxidation technology to treat 1,4-dioxane pollution [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 380-388. |
| [13] | QIAN Yuanyuan, WANG Yongjie, YANG Xuejing. Application of ozone for water treatment and implication of mass transfer characteristics [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 411-425. |
| [14] | WU Wentong, ZHANG Lingling, LI Zifu, WANG Chenxi, YU Chunsong, WANG Qingguo. Research progress of advanced oxidation technology in degradation of antibiotics and removal of antibiotic resistance [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4551-4561. |
| [15] | HAN Wanling, QIAN Yongxing, ZHANG Huining, CHEN Jiwei, MA Jianqing, ZHANG Kefeng. Review on removal methods of short-chain chlorinated paraffins in environment [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3444-3454. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |