Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (8): 4147-4158.DOI: 10.16085/j.issn.1000-6613.2021-2140
• Industrial catalysis • Previous Articles Next Articles
DUAN Yi(), ZOU Ye, ZHOU Shukui(), YANG Liu
Received:
2021-10-18
Revised:
2022-01-14
Online:
2022-08-22
Published:
2022-08-25
Contact:
ZHOU Shukui
通讯作者:
周书葵
作者简介:
段毅(1987—),男,博士,工程师,研究方向为水质净化与水污染控制等。E-mail:基金资助:
CLC Number:
DUAN Yi, ZOU Ye, ZHOU Shukui, YANG Liu. Progress in the degradation of organic pollutants by H2O2/PMS/PDS activated by transition metal single-atom catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4147-4158.
段毅, 邹烨, 周书葵, 杨柳. 过渡金属单原子催化剂活化H2O2/PMS/PDS降解有机污染物的研究进展[J]. 化工进展, 2022, 41(8): 4147-4158.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2140
金属 | 催化剂/g·L-1 | 合成方法 | 有机物及浓度 /mg·L-1 | 氧化剂及浓度 /mmol·L-1 | 循环次数 (效率) | 降解效率 /%(min) | 主要活性基团 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
Fe | Fe x Mo1-x S2(0.1) | 水热解法 | PPA(20) | PDS(1) | 5(62.1%) | 90(30) | SO | [ |
Fe/MnO2(0.2) | 热处理法 | MB(20) | H2O2(4.4) | — | 82(80) | ·OH | [ | |
Fe-N-C(0.02) | 球磨法 | 2,4-DCP(3.3) | PDS(0.2) | — | 90(60) | Fe(Ⅴ) | [ | |
Fe3O4/MIL-101(1) | 超声法 | OPD(50) | H2O2(0.66) | 5(95%) | 97.79(25) | ·OH | [ | |
FePC/石墨烯(0.2) | 煅烧酸洗法 | 苯酚(50) | H2O2(4.4) | 5(55%) | 77.1(180) | ·OH | [ | |
Fe-g-C3N4(0.2) | 高温热解法 | MB(20) | H2O2(77) | — | 99.16(80) | ·OH、1O2 | [ | |
FeSA-N/C(0.15) | 热处理法 | BPA(20) | PMS(11.77) | 5(81%) | 99.3(20) | 1O2 | [ | |
SA Fe-g-C3N4(0.1) | 高温煅烧法 | TC(50) | PMS(0.5) | 4(91%) | 93.29(40) | ·OH、SO | [ | |
Co | SA Co-N/C(0.05) | 高温煅烧法 | NPX(10) | PMS(0.5) | 4(96%) | 100(50) | ·OH、SO | [ |
Co-N-C(0.5) | 煅烧酸洗法 | BPA(80) | PMS(0.98) | 3(96.3%) | 100(60) | 1O2 | [ | |
Co-C-N(0.5) | 模板蚀刻法 | AO7(50) | PMS(0.1) | 6(99.3%) | 100(10) | SO | [ | |
SA Co-N-C(0.1) | 热解法 | CQP(10) | PMS(1) | 3(80%) | 98(20) | SO | [ | |
BCN/CoN(0.03) | 高温煅烧法 | TC(50) | PMS(8.82) | 5(100%) | 100(60) | 1O2 | [ | |
FeCo-NC-2(0.1) | 热处理法 | BPA(20) | PMS(0.65) | 8(85%) | 98(60) | SO | [ | |
Mn | Mn-ISAs@CN(0.2) | 热解法 | BPA(20) | PMS(0.65) | 5(80%) | 90(60) | ·OH | [ |
Mn-CN(0.1) | 热解法 | OA(10) | H2O2(—) | 5(82%) | 100(40) | ·OH | [ | |
SA-Mn/NG(0.1) | 高温煅烧法 | SMX(10) | PMS(1) | 4(84%) | 97(40) | ·OH、SO | [ | |
SA-Mn/g-C3N4(0.1) | 高温煅烧法 | TBBPA(50) | PMS(5) | 5(93%) | 100(30) | 1O2、SO | [ | |
Cu | Cu-C3N4(1) | 热解法 | RhB(10) | H2O2(29.4) | — | 99.97(60) | ·OH | [ |
SA-Cu/rGO(0.1) | 球磨法 | SMX(10) | PMS(1.3) | 5(91.6%) | 99.6(60) | ·OH、SO | [ | |
SA-Cu@NBC(0.1) | 高温煅烧法 | BPA(20) | PMS(11.77) | 4(97%) | 100(60) | SO | [ | |
双金属 | Co/Fe-N-C(0.5) | 热解法 | 苯酚(100) | PDS(10) | 5(70.4%) | 79.2(120) | SO | [ |
Fe-Ce/g-C3N4(0.5) | 高温煅烧法 | MB(200) | H2O2(4.4) | 3(90%) | 100(40) | ·OH、·OOH | [ | |
FeBi-NC(0.03) | 热解法 | RhB(30) | PMS(4.41) | 5(99%) | 100(5) | ·OH、SO | [ | |
Fe/Cu-N-C(0.1) | 热解法 | CAP(20) | PDS(5) | 5(90.8%) | 90.8(60) | ·OH、SO | [ | |
Pt | Pt/Al2O3(0.2) | 热处理法 | 1,4-D(20) | H2O2(3.5) | 4(76%) | 95(60) | SO | [ |
Ag | Ag/mpg-C3N4(0.1) | 高温煅烧法 | BPA(20) | PMS(1) | 4(76%) | 98(60) | SO | [ |
金属 | 催化剂/g·L-1 | 合成方法 | 有机物及浓度 /mg·L-1 | 氧化剂及浓度 /mmol·L-1 | 循环次数 (效率) | 降解效率 /%(min) | 主要活性基团 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
Fe | Fe x Mo1-x S2(0.1) | 水热解法 | PPA(20) | PDS(1) | 5(62.1%) | 90(30) | SO | [ |
Fe/MnO2(0.2) | 热处理法 | MB(20) | H2O2(4.4) | — | 82(80) | ·OH | [ | |
Fe-N-C(0.02) | 球磨法 | 2,4-DCP(3.3) | PDS(0.2) | — | 90(60) | Fe(Ⅴ) | [ | |
Fe3O4/MIL-101(1) | 超声法 | OPD(50) | H2O2(0.66) | 5(95%) | 97.79(25) | ·OH | [ | |
FePC/石墨烯(0.2) | 煅烧酸洗法 | 苯酚(50) | H2O2(4.4) | 5(55%) | 77.1(180) | ·OH | [ | |
Fe-g-C3N4(0.2) | 高温热解法 | MB(20) | H2O2(77) | — | 99.16(80) | ·OH、1O2 | [ | |
FeSA-N/C(0.15) | 热处理法 | BPA(20) | PMS(11.77) | 5(81%) | 99.3(20) | 1O2 | [ | |
SA Fe-g-C3N4(0.1) | 高温煅烧法 | TC(50) | PMS(0.5) | 4(91%) | 93.29(40) | ·OH、SO | [ | |
Co | SA Co-N/C(0.05) | 高温煅烧法 | NPX(10) | PMS(0.5) | 4(96%) | 100(50) | ·OH、SO | [ |
Co-N-C(0.5) | 煅烧酸洗法 | BPA(80) | PMS(0.98) | 3(96.3%) | 100(60) | 1O2 | [ | |
Co-C-N(0.5) | 模板蚀刻法 | AO7(50) | PMS(0.1) | 6(99.3%) | 100(10) | SO | [ | |
SA Co-N-C(0.1) | 热解法 | CQP(10) | PMS(1) | 3(80%) | 98(20) | SO | [ | |
BCN/CoN(0.03) | 高温煅烧法 | TC(50) | PMS(8.82) | 5(100%) | 100(60) | 1O2 | [ | |
FeCo-NC-2(0.1) | 热处理法 | BPA(20) | PMS(0.65) | 8(85%) | 98(60) | SO | [ | |
Mn | Mn-ISAs@CN(0.2) | 热解法 | BPA(20) | PMS(0.65) | 5(80%) | 90(60) | ·OH | [ |
Mn-CN(0.1) | 热解法 | OA(10) | H2O2(—) | 5(82%) | 100(40) | ·OH | [ | |
SA-Mn/NG(0.1) | 高温煅烧法 | SMX(10) | PMS(1) | 4(84%) | 97(40) | ·OH、SO | [ | |
SA-Mn/g-C3N4(0.1) | 高温煅烧法 | TBBPA(50) | PMS(5) | 5(93%) | 100(30) | 1O2、SO | [ | |
Cu | Cu-C3N4(1) | 热解法 | RhB(10) | H2O2(29.4) | — | 99.97(60) | ·OH | [ |
SA-Cu/rGO(0.1) | 球磨法 | SMX(10) | PMS(1.3) | 5(91.6%) | 99.6(60) | ·OH、SO | [ | |
SA-Cu@NBC(0.1) | 高温煅烧法 | BPA(20) | PMS(11.77) | 4(97%) | 100(60) | SO | [ | |
双金属 | Co/Fe-N-C(0.5) | 热解法 | 苯酚(100) | PDS(10) | 5(70.4%) | 79.2(120) | SO | [ |
Fe-Ce/g-C3N4(0.5) | 高温煅烧法 | MB(200) | H2O2(4.4) | 3(90%) | 100(40) | ·OH、·OOH | [ | |
FeBi-NC(0.03) | 热解法 | RhB(30) | PMS(4.41) | 5(99%) | 100(5) | ·OH、SO | [ | |
Fe/Cu-N-C(0.1) | 热解法 | CAP(20) | PDS(5) | 5(90.8%) | 90.8(60) | ·OH、SO | [ | |
Pt | Pt/Al2O3(0.2) | 热处理法 | 1,4-D(20) | H2O2(3.5) | 4(76%) | 95(60) | SO | [ |
Ag | Ag/mpg-C3N4(0.1) | 高温煅烧法 | BPA(20) | PMS(1) | 4(76%) | 98(60) | SO | [ |
1 | CHENG Min, ZENG Guangming, HUANG Danlian, et al. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review[J]. Chemical Engineering Journal, 2016, 284: 582-598. |
2 | PETRIE B, BARDEN R, KASPZYK-HORDERN B. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring[J]. Water Research, 2015, 72: 3-27. |
3 | TRAN N H, REINHARD M, GIN K Y H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions: a review[J]. Water Research, 2018, 133: 182-207. |
4 | FLYTZANI-STEPHANOPOULOS M. Gold atoms stabilized on various supports catalyze the water-gas shift reaction[J]. Accounts of Chemical Research, 2014, 47(3): 783-792. |
5 | WANG Xun, PENG Qing, LI Yadong. Interface-mediated growth of monodispersed nanostructures[J]. Accounts of Chemical Research, 2007, 40(8): 635-643. |
6 | CHEN Guangxu, XU Chaofa, HUANG Xiaoqing, et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts[J]. Nature Materials, 2016, 15(5): 564-569. |
7 | DENG Dehui, NOVOSELOV K S, FU Qiang, et al. Catalysis with two-dimensional materials and their heterostructures[J]. Nature Nanotechnology, 2016, 11(3): 218-230. |
8 | ZHAO Guofeng, YANG Fan, CHEN Zongjia, et al. Metal/oxide interfacial effects on the selective oxidation of primary alcohols[J]. Nature Communications, 2017, 8: 14039. |
9 | JIN Huanyu, GUO Chunxian, LIU Xin, et al. Emerging two-dimensional nanomaterials for electrocatalysis[J]. Chemical Reviews, 2018, 118(13): 6337-6408. |
10 | JIAO Long, JIANG Hailong. Metal-organic-framework-based single-atom catalysts for energy applications[J]. Chem, 2019, 5(4): 786-804. |
11 | YANG Xiaofeng, WANG Aiqin, QIAO Botao, et al. Single-atom catalysts: a new frontier in heterogeneous catalysisy[J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748. |
12 | WEON S, HUANG Dahong, RIGBY K, et al. Environmental materials beyond and below the nanoscale: single-atom catalysts[J]. ACS ES&T Engineering, 2021, 1(2): 157-172. |
13 | HUANG Bingkun, WU Zelin, ZHOU Hongyu, et al. Recent advances in single-atom catalysts for advanced oxidation processes in water purification[J]. Journal of Hazardous Materials, 2021, 412: 125253. |
14 | SHANG Yanan, XU Xing, GAO Baoyu, et al. Single-atom catalysis in advanced oxidation processes for environmental remediation[J]. Chemical Society Reviews, 2021, 50(8): 5281-5322. |
15 | NEYENS E, BAEYENS J. A review of classic Fenton’s peroxidation as an advanced oxidation technique[J]. Journal of Hazardous Materials, 2003, 98(1/2/3): 33-50. |
16 | 韩旭, 漆舒羽, 张锋伟, 等. 原子级单分散Fe催化剂的高效合成及在可见光下染料降解性能的研究[J].山西大学学报(自然科学版), 2020, 43(3): 552-558. |
HAN Xu, QI Shuyu, ZHANG Fengwei, et al. Study on high-efficiency synthesis of monodisperse Fe catalyst and properties of visible light degradation[J]. Journal of Shanxi University(Natural Science Edition), 2020, 43(3): 552-558. | |
17 | YIN Yu, SHI Lei, LI Wenlang, et al. Boosting Fenton-like reactions via single atom Fe catalysis[J]. Environmental Science & Technology, 2019, 53(19): 11391-11400. |
18 | GAO Yaowen, ZHU Yue, Lai LYU, et al. Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation[J]. Environmental Science & Technology, 2018, 52(24): 14371-14380. |
19 | YAO Yunjin, YIN Hongyu, GAO Mengxue, et al. Electronic structure modulation of covalent organic frameworks by single-atom Fe doping for enhanced oxidation of aqueous contaminants[J]. Chemical Engineering Science, 2019, 209: 115211. |
20 | JIANG Ning, XU Haodan, WANG Lihong, et al. Nonradical oxidation of pollutants with single-atom-Fe( )-activated persulfate: Fe( ) being the possible intermediate oxidant[J]. Environmental Science & Technology, 2020, 54(21): 14057-14065. |
21 | HUANG Lizhi, WEI Xiuli, GAO Enlai, et al. Single Fe atoms confined in two-dimensional MoS2 for sulfite activation: a biomimetic approach towards efficient radical generation[J]. Applied Catalysis B: Environmental, 2020, 268: 118459. |
22 | ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712. |
23 | LIU Wengang, ZHANG Leilei, YAN Wensheng, et al. Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes[J]. Chemical Science, 2016, 7(9): 5758-5764. |
24 | CHEN Mantang, WANG Nan, ZHU Lihua. Single-atom dispersed Co-N-C: a novel adsorption-catalysis bifunctional material for rapid removing bisphenol A[J]. Catalysis Today, 2020, 348: 187-193. |
25 | 徐劼, 王柯晴, 田丹, 等. 单原子Co-C-N催化过一硫酸盐降解金橙Ⅱ[J]. 中国环境科学, 2021, 41(1): 151-160. |
XU Jie, WANG Keqing, TIAN Dan, et al. Degradation of AO7 with peroxymonosulfate catalyzed by Co-C-N single atom[J]. China Environmental Science, 2021, 41(1): 151-160. | |
26 | CHU Chiheng, YANG Ji, ZHOU Xuechen, et al. Cobalt single atoms on tetrapyridomacrocyclic support for efficient peroxymonosulfate activation[J]. Environmental Science & Technology, 2021, 55(2): 1242-1250. |
27 | YANG Jingren, ZENG Deqian, ZHANG Qinggang, et al. Single Mn atom anchored on N-doped porous carbon as highly efficient Fenton-like catalyst for the degradation of organic contaminants[J]. Applied Catalysis B: Environmental, 2020, 279: 119363. |
28 | ZHONG Yuanhong, LIANG Xiaoliang, HE Zisen, et al. The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: from the perspective of hydroxyl radical generation[J]. Applied Catalysis B: Environmental, 2014, 150/151: 612-618. |
29 | GUO Zhuang, XIE Yongbing, XIAO Jiadong, et al. Single-atom Mn-N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution[J]. Journal of the American Chemical Society, 2019, 141(30): 12005-12010. |
30 | 柯倩. 过渡金属单原子负载石墨相氮化碳的制备及其降解污染物的应用研究[D]. 金华: 浙江师范大学, 2020. |
KE Qian. Preparation of graphitic carbon nitride supported by transition mental single atom and application of pollutants degradation[D]. Jinhua: Zhejiang Normal University, 2020. | |
31 | XU Jinwei, ZHENG Xueli, FENG Zhiping, et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2 [J]. Nature Sustainability, 2021, 4(3): 233-241. |
32 | CHEN Feng, WU Xilin, YANG Liu, et al. Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst[J]. Chemical Engineering Journal, 2020, 394: 124904. |
33 | 邓方鑫. 钴铁双金属单原子催化剂活化过硫酸盐处理含酚废水的研究[D]. 湘潭: 湘潭大学, 2020. |
DENG Fangxin. Research on treatment of phenolic wastewater by catalyzed peroxydisulfate activation with isolated diatomic Co-Fe metal-nitrogen sites[D]. Xiangtan: Xiangtan University, 2020. | |
34 | CHEN Qiumeng, LIU Yuan, LU Yuwan, et al. Atomically dispersed Fe/Bi dual active sites single-atom nanozymes for cascade catalysis and peroxymonosulfate activation to degrade dyes[J]. Journal of Hazardous Materials, 2022, 422: 126929. |
35 | WU Huihui, YAN Jingjing, XU Xin, et al. Synergistic effects for boosted persulfate activation in a designed Fe-Cu dual-atom site catalyst[J]. Chemical Engineering Journal, 2022, 428: 132611. |
36 | 梁言, 王婷雯, 赵永琴, 等. Fe-Ce/g-C3N4芬顿催化剂的制备及其降解有机污染物性能研究[J]. 现代化工, 2021, 41(3): 190-195. |
LIANG Yan, WANG Tingwen, ZHAO Yongqin, et al. Preparation of Fenton catalyst Fe-Ce/g-C3N4 and its performance for degradation of organic pollutants[J]. Modern Chemical Industry, 2021, 41(3): 190-195. | |
37 | 陈枫. 碳材料负载过渡金属单原子催化剂应用于水中微污染物的催化降解研究[D]. 金华: 浙江师范大学, 2020. |
CHEN Feng. Synthesis of tranition metal single atom-doped carbon materials catalysts and applied to the degradation of micro-pollutants in water[D]. Jinhua: Zhejiang Normal University, 2020. | |
38 | HUANG Dahong, DE VERA G A, CHU Chiheng, et al. Single-atom Pt catalyst for effective C-F bond activation via hydrodefluorination[J]. ACS Catalysis, 2018, 8(10): 9353-9358. |
39 | FENG Yong, LEE Poheng, WU Deli, et al. Surface-bound sulfate radical-dominated degradation of 1, 4-dioxane by alumina-supported palladium (Pd/Al2O3) catalyzed peroxymonosulfate[J]. Water Research, 2017, 120: 12-21. |
40 | WANG Yanbin, ZHAO Xu, CAO Di, et al. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid[J]. Applied Catalysis B: Environmental, 2017, 211: 79-88. |
41 | XUE Yudong, PHAM N N T, NAM G, et al. Persulfate activation by ZIF-67-derived cobalt/nitrogen-doped carbon composites: kinetics and mechanisms dependent on persulfate precursor[J]. Chemical Engineering Journal, 2021, 408: 127305. |
42 | QI Yuanfeng, LI Jing, ZHANG Yanqing, et al. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: role of single cobalt and electron transfer pathway[J]. Applied Catalysis B: Environmental, 2021, 286: 119910. |
43 | ZHANG Danyu, YIN Kai, TANG Yanhong, et al. Hollow sea-urchin-shaped carbon-anchored single-atom iron as dual-functional electro-Fenton catalysts for degrading refractory thiamphenicol with fast reaction kinetics in a wide pH range[J]. Chemical Engineering Journal, 2022, 427: 130996. |
44 | YANG Ting, FAN Shisuo, LI Yang, et al. Fe-N/C single-atom catalysts with high density of Fe-N x sites toward peroxymonosulfate activation for high-efficient oxidation of bisphenol A: electron-transfer mechanism[J]. Chemical Engineering Journal, 2021, 419: 129590 |
45 | ZHANG Longshuai, JIANG Xunheng, ZHONG Ziai, et al. Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100% selectivity[J]. Angewandte Chemie International Edition, 2021, 60(40): 21751-21755. |
46 | PAN Jingwen, GAO Baoyu, DUAN Pijun,et al. Improving peroxymonosulfate activation by copper ion-saturated adsorbent-based single atom catalysts for the degradation of organic contaminants: electron-transfer mechanism and the key role of Cu single atoms[J]. Journal of Materials Chemistry A, 2021, 9(19): 11604-11613. |
47 | ZHAO Xue, LI Xue, ZHU Zhu, et al. Single-atom Co embedded in BCN matrix to achieve 100% conversion of peroxymonosulfate into singlet oxygen[J]. Applied Catalysis B: Environmental, 2022, 300: 120759. |
48 | PENG Xiaoming, WU Jianqun, ZHAO Zilong, et al. Activation of peroxymonosulfate by single atom Co-N-C catalysts for high-efficient removal of chloroquine phosphate via non-radical pathways: electron-transfer mechanism[J]. Chemical Engineering Journal, 2022, 429: 132245. |
49 | ZHAO Shiyong, CHEN Guangxu, ZHOU Guangmin, et al. A universal seeding strategy to synthesize single atom catalysts on 2D materials for electrocatalytic applications[J]. Advanced Functional Materials, 2020, 30(6): 1906157. |
50 | CHEN Zhe, ZHAO Jingxiang, CABRERA C R, et al. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction[J]. Small Methods, 2019, 3(6): 1800368. |
51 | PENG Xiaoming, WU Jianqun, ZHAO Zilong, et al. Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: role of high-valent iron-oxo species and Fe-N x sites[J]. Chemical Engineering Journal, 2022, 427: 130803. |
52 | ZHAO Chaocheng, DONG Pei, LIU Zongmei, et al. Facile synthesis of Fe3O4/MIL-101 nanocomposite as an efficient heterogeneous catalyst for degradation of pollutants in Fenton-like system[J]. RSC Advances, 2017, 7(39): 24453-24461. |
53 | HUANG Ruting, LIU Yanyu, CHEN Zhiwen, et al. Fe-species-loaded mesoporous MnO2 superstructural requirements for enhanced catalysis[J]. ACS Applied Materials & Interfaces, 2015, 7(7): 3949-3959. |
54 | WANG Qinglong, LI Haiyan, YANG Jinghe, et al. Iron phthalocyanine-graphene donor-acceptor hybrids for visible-light-assisted degradation of phenol in the presence of H2O2 [J]. Applied Catalysis B: Environmental, 2016, 192: 182-192. |
55 | AN Sufeng, ZHANG Guanghui, WANG Tingwen, et al. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes[J]. ACS Nano, 2018, 12(9): 9441-9450. |
56 | LI Xuning, HUANG Xiang, XI Shibo, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis[J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475. |
[1] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[2] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[3] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[4] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[5] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[6] | LI Xin, YANG Zao, ZHONG Xinru, HAN Haoxuan, ZHUANG Xuning, BAI Jianfeng, DONG Bin, XU Zuxin. Binding mechanism of Pb2+ onto humic acids from sludge hyper-thermophilic composting [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4957-4966. |
[7] | YANG Han, ZHANG Yibo, LI Qi, ZHANG Jun, TAO Ying, YANG Quanhong. Practical carbon anodes for sodium-ion batteries: progress and challenge [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4029-4042. |
[8] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[9] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[10] | OUYANG Sufang, ZHOU Daowei, HUANG Wei, JIA Feng. Research progress on novel anti-migration rubber antioxidants [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3708-3719. |
[11] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[12] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[13] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[14] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[15] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |