Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 3965-3975.DOI: 10.16085/j.issn.1000-6613.2024-0895
• Materials science and technology • Previous Articles
LIANG Shuwei(
), YU Jie, XIE Zhongyin, PEI Jianlu, LIN Zhongxin, CHEN Zexiang
Received:2024-06-02
Revised:2024-07-25
Online:2025-08-04
Published:2025-07-25
Contact:
LIANG Shuwei
通讯作者:
梁书玮
作者简介:梁书玮(1996—),男,硕士,研究方向为核空气净化、气体吸附材料。E-mail:liangsw0910@163.com。
基金资助:CLC Number:
LIANG Shuwei, YU Jie, XIE Zhongyin, PEI Jianlu, LIN Zhongxin, CHEN Zexiang. Covalent organic frameworks for radioactive gaseous iodine adsorption[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3965-3975.
梁书玮, 俞杰, 谢钟音, 裴鉴禄, 林中鑫, 陈泽翔. 共价有机框架吸附放射性气态碘的研究进展[J]. 化工进展, 2025, 44(7): 3965-3975.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0895
| COFs材料 | 种类 | 比表面积/m2·g-1 | 孔径/nm | 孔容/cm3·g-1 | I2饱和吸附时间/h | 饱和吸附容量/g·g-1 | 参考文献 |
|---|---|---|---|---|---|---|---|
| COF-TAPT | 二维亚胺COFs | 2348 | 1.92 | 0.97 | 96 | 8.61,1.53① 2.38②,1.30③ | [ |
| TPB-DMTP | 二维亚胺COFs | 1927 | 3.3 | 1.28 | 96 | 6.26 | [ |
| SCU-COF-2 | 联吡啶基COFs | 413.4 | — | — | 96 | 6.0,1.45① 0.979④,0.564⑤ | [ |
| TGDM | 胍基离子COFs | 645.8 | 0.66 | 0.46 | 10 | 0.29⑥ | [ |
| OM-COF-300 | 大孔单晶三维COFs | 1410 | 0.5 | 0.63 | 36 | 3.15 | [ |
| micro-COF-1 | 微孔二维亚胺COFs | 816 | 1.7 | 0.59 | 75 | 2.9 | [ |
| CTF-1@ZnCl2 | 二维三嗪COFs | 1476 | 2.0 | — | 24 | 4.31 | [ |
| TPT-DHBD | 羟基修饰亚胺COFs | 297 | 3.43 | — | 46 | 4.03 | [ |
| FAL-COF-1 | 柔性胺类COFs | 168 | 3.69 | 0.32 | 75 | 4.94 | [ |
| Hz-COF | 腙类COFs | 145 | 2.16 | — | 70 | 2.05 | [ |
| NH-COF | 胺类COFs | 78 | 2.16 | — | 70 | 2.60 | [ |
| QTD-COF-1 | 准三维COFs | — | 1.36/1.66 | — | 5 | 4.62 | [ |
| JUC-561 | 三维COFs | 2359 | 2.46 | 1.92 | 18 | 8.19 | [ |
| SIOC-COF-7 | 二维亚胺COFs | 618 | 0.50/1.18 | 0.41 | 48 | 4.81 | [ |
| TJNU-201 | 二维亚胺COFs | 2510 | 1.4 | — | 96 | 5.625 | [ |
| COF-p-NEU1 | C | 186 | 4.93 | — | 30 | 4.58 | [ |
| 肼-MTH-TFPB | 酰胺类COFs | 364.3 | 2.9 | 0.23 | 61 | 3.05 | [ |
| COF-LZU-1 | π共轭COFs | 858 | 1.6 | 0.48 | 48 | 5.30 | [ |
| TFPB-PyTTA-COF | 芘环COFs | 1897 | 1.20 | 1.78 | 36 | 5.62 | [ |
| TTA-FMTA-COF | 甲氧基COFs | 1985 | 1.97 | 1.12 | 24 | 5.07 | [ |
| NH2-Th-Bta | 氨基COFs | 10 | 2.4 | — | 37 | 3.58 | [ |
| TJNU-204 | 羟基COFs | 2048 | 0.89 | — | 48 | 5.34 | [ |
| TAPD-DHTA | 羟基COFs | 213.6 | 1.56/2.73 | — | 44 | 4.02 | [ |
| BTT-TAPT | 噻吩基COFs | 864 | 1.0-2.0 | 0.56 | 50 | 2.76 | [ |
| PB-TT | 吡啶基COFs | 1306.3 | 3.67 | 0.986 | 30 | 5.97 | [ |
| C-TP-PDA | 吡啶基离子COFs | 133 | 1.3 | 0.08 | 24 | 3.05 | [ |
| COF-PA | 苯炔基COFs | 1471 | 2.1 | — | 16 | 4.47 | [ |
| CPOF-2 | 炔基三维COFs | 580 | 1.1 | — | 68 | 5.40 | [ |
| P-COF | 磷基COFs | 1056 | 1.0-2.0 | 0.60 | 66 | 6.19 | [ |
| TTF-TAPT | 四硫富瓦烯基COFs | 461 | — | 0.28 | 18 | 5.02 | [ |
| iCOF-AB-50 | 阳离子COFs | 1390 | 3.3 | 1.21 | 30 | 10.21,2.79②,0.44⑦ | [ |
| TAPB-PDA | 晶态COFs气凝胶 | 2273 | 3.3 | — | 90 | 7.7 | [ |
| TPB-DMTP-COF | COFs薄膜 | — | — | — | 4 | 6.87 | [ |
| COF@棉纤维 | COFs@棉纤维 | 124 | — | — | 20 | 0.534 | [ |
| CF/COF | COFs@棉纤维 | 166 | — | — | 12 | 0.824 | [ |
| COFs材料 | 种类 | 比表面积/m2·g-1 | 孔径/nm | 孔容/cm3·g-1 | I2饱和吸附时间/h | 饱和吸附容量/g·g-1 | 参考文献 |
|---|---|---|---|---|---|---|---|
| COF-TAPT | 二维亚胺COFs | 2348 | 1.92 | 0.97 | 96 | 8.61,1.53① 2.38②,1.30③ | [ |
| TPB-DMTP | 二维亚胺COFs | 1927 | 3.3 | 1.28 | 96 | 6.26 | [ |
| SCU-COF-2 | 联吡啶基COFs | 413.4 | — | — | 96 | 6.0,1.45① 0.979④,0.564⑤ | [ |
| TGDM | 胍基离子COFs | 645.8 | 0.66 | 0.46 | 10 | 0.29⑥ | [ |
| OM-COF-300 | 大孔单晶三维COFs | 1410 | 0.5 | 0.63 | 36 | 3.15 | [ |
| micro-COF-1 | 微孔二维亚胺COFs | 816 | 1.7 | 0.59 | 75 | 2.9 | [ |
| CTF-1@ZnCl2 | 二维三嗪COFs | 1476 | 2.0 | — | 24 | 4.31 | [ |
| TPT-DHBD | 羟基修饰亚胺COFs | 297 | 3.43 | — | 46 | 4.03 | [ |
| FAL-COF-1 | 柔性胺类COFs | 168 | 3.69 | 0.32 | 75 | 4.94 | [ |
| Hz-COF | 腙类COFs | 145 | 2.16 | — | 70 | 2.05 | [ |
| NH-COF | 胺类COFs | 78 | 2.16 | — | 70 | 2.60 | [ |
| QTD-COF-1 | 准三维COFs | — | 1.36/1.66 | — | 5 | 4.62 | [ |
| JUC-561 | 三维COFs | 2359 | 2.46 | 1.92 | 18 | 8.19 | [ |
| SIOC-COF-7 | 二维亚胺COFs | 618 | 0.50/1.18 | 0.41 | 48 | 4.81 | [ |
| TJNU-201 | 二维亚胺COFs | 2510 | 1.4 | — | 96 | 5.625 | [ |
| COF-p-NEU1 | C | 186 | 4.93 | — | 30 | 4.58 | [ |
| 肼-MTH-TFPB | 酰胺类COFs | 364.3 | 2.9 | 0.23 | 61 | 3.05 | [ |
| COF-LZU-1 | π共轭COFs | 858 | 1.6 | 0.48 | 48 | 5.30 | [ |
| TFPB-PyTTA-COF | 芘环COFs | 1897 | 1.20 | 1.78 | 36 | 5.62 | [ |
| TTA-FMTA-COF | 甲氧基COFs | 1985 | 1.97 | 1.12 | 24 | 5.07 | [ |
| NH2-Th-Bta | 氨基COFs | 10 | 2.4 | — | 37 | 3.58 | [ |
| TJNU-204 | 羟基COFs | 2048 | 0.89 | — | 48 | 5.34 | [ |
| TAPD-DHTA | 羟基COFs | 213.6 | 1.56/2.73 | — | 44 | 4.02 | [ |
| BTT-TAPT | 噻吩基COFs | 864 | 1.0-2.0 | 0.56 | 50 | 2.76 | [ |
| PB-TT | 吡啶基COFs | 1306.3 | 3.67 | 0.986 | 30 | 5.97 | [ |
| C-TP-PDA | 吡啶基离子COFs | 133 | 1.3 | 0.08 | 24 | 3.05 | [ |
| COF-PA | 苯炔基COFs | 1471 | 2.1 | — | 16 | 4.47 | [ |
| CPOF-2 | 炔基三维COFs | 580 | 1.1 | — | 68 | 5.40 | [ |
| P-COF | 磷基COFs | 1056 | 1.0-2.0 | 0.60 | 66 | 6.19 | [ |
| TTF-TAPT | 四硫富瓦烯基COFs | 461 | — | 0.28 | 18 | 5.02 | [ |
| iCOF-AB-50 | 阳离子COFs | 1390 | 3.3 | 1.21 | 30 | 10.21,2.79②,0.44⑦ | [ |
| TAPB-PDA | 晶态COFs气凝胶 | 2273 | 3.3 | — | 90 | 7.7 | [ |
| TPB-DMTP-COF | COFs薄膜 | — | — | — | 4 | 6.87 | [ |
| COF@棉纤维 | COFs@棉纤维 | 124 | — | — | 20 | 0.534 | [ |
| CF/COF | COFs@棉纤维 | 166 | — | — | 12 | 0.824 | [ |
| [1] | WREN Jungsook Clara, MOORE Chris J, RASMUSSEN Miyoko Tateishi, et al. Methyl iodide trapping efficiency of aged charcoal samples from Bruce—A emergency filtered air discharge systems[J]. Nuclear Technology, 1999, 125(1): 28-39. |
| [2] | KEVIN Winegardner W. Phase Ⅰ aging assessment of nuclear air-treatment system high efficiency particulate air and adsorbers[J]. Nuclear Engineering and Design, 1996, 163(3): 315-322. |
| [3] | HUVE Joffrey, RYZHIKOV Andrey, NOUALI Habiba, et al. Porous sorbents for the capture of radioactive iodine compounds: A review[J]. RSC Advances, 2018, 8(51): 29248-29273. |
| [4] | BERSENEVA Anna A, MARTIN Corey R, GALITSKIY Vladimir A, et al. “Boarding-up”: Radiation damage and radionuclide leaching kinetics in linker-capped metal-organic frameworks[J]. Inorganic Chemistry, 2020, 59(1): 179-183. |
| [5] | SAVA Dorina F, CHAPMAN Karena W, RODRIGUEZ Mark A, et al. Competitive I2 sorption by Cu-BTC from humid gas streams[J]. Chemistry of Materials, 2013, 25(13): 2591-2596. |
| [6] | KURISINGAL Jintu Francis, YUN Hongryeol, HONG Chang Seop. Porous organic materials for iodine adsorption[J]. Journal of Hazardous Materials, 2023, 458: 131835. |
| [7] | ZHANG Ning, ISHAG Alhadi, LI Ying, et al. Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review[J]. Journal of Cleaner Production, 2020, 277: 123360. |
| [8] | XIE Yaqiang, PAN Tingting, LEI Qiong, et al. Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework[J]. Nature Communications, 2022, 13(1): 2878. |
| [9] | WANG Ping, XU Qing, LI Zhongping, et al. Exceptional iodine capture in 2D covalent organic frameworks[J]. Advanced Materials, 2018, 30(29): 1801991. |
| [10] | HE Linwei, CHEN Long, DONG Xinglong, et al. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide[J]. Chem, 2021, 7(3): 699-714. |
| [11] | ZHANG Zhiyuan, DONG Xinglong, YIN Jun, et al. Chemically stable guanidinium covalent organic framework for the efficient capture of low-concentration iodine at high temperatures[J]. Journal of the American Chemical Society, 2022, 144(15): 6821-6829. |
| [12] | Keon HO, MOON Seunghyun, LEE Hyung Chae, et al. Adsorptive removal of gaseous methyl iodide by triethylenediamine (TEDA)-metal impregnated activated carbons under humid conditions[J]. Journal of Hazardous Materials, 2019, 368: 550-559. |
| [13] | CHAPMAN Karena W, CHUPAS Peter J, NENOFF Tina M. Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation[J]. Journal of the American Chemical Society, 2010, 132(26): 8897-8899. |
| [14] | LIU Tong, ZHAO Yi, SONG Min, et al. Ordered macro-microporous single crystals of covalent organic frameworks with efficient sorption of iodine[J]. Journal of the American Chemical Society, 2023, 145(4): 2544-2552. |
| [15] | AN Shuhao, ZHU Xiang, HE Yanyan, et al. Porosity modulation in two-dimensional covalent organic frameworks leads to enhanced iodine adsorption performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(24): 10495-10502. |
| [16] | HE Xunming, ZHANG Suyun, TANG Xiang, et al. Exploration of 1D channels in stable and high-surface-area covalent triazine polymers for effective iodine removal[J]. Chemical Engineering Journal, 2019, 371: 314-318. |
| [17] | GUO Xinghua, TIAN Yin, ZHANG Meicheng, et al. Mechanistic insight into hydrogen-bond-controlled crystallinity and adsorption property of covalent organic frameworks from flexible building blocks[J]. Chemistry of Materials, 2018, 30(7): 2299-2308. |
| [18] | ZHANG Meicheng, LI Yang, YUAN Wenli, et al. Construction of flexible amine-linked covalent organic frameworks by catalysis and reduction of formic acid via the Eschweiler-Clarke reaction[J]. Angewandte Chemie International Edition, 2021, 60(22): 12396-12405. |
| [19] | MOKHTARI Nazanin, DINARI Mohammad. Developing novel amine-linked covalent organic frameworks towards reversible iodine capture[J]. Separation and Purification Technology, 2022, 301: 121948. |
| [20] | GUO Xinghua, LI Yang, ZHANG Meicheng, et al. Colyliform crystalline 2D covalent organic frameworks (COFs) with quasi-3D topologies for rapid I2 adsorption[J]. Angewandte Chemie International Edition, 2020, 59(50): 22697-22705. |
| [21] | CHANG Jianhong, LI Hui, ZHAO Jie, et al. Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture[J]. Chemical Science, 2021, 12(24): 8452-8457. |
| [22] | WANG Jianlong, ZHUANG Shuting. Covalent organic frameworks (COFs) for environmental applications[J]. Coordination Chemistry Reviews, 2019, 400: 213046. |
| [23] | YIN Zhijian, XU Shunqi, ZHAN Tianguang, et al. Ultrahigh volatile iodine uptake by hollow microspheres formed from a heteropore covalent organic framework[J]. Chemical Communications, 2017, 53(53): 7266-7269. |
| [24] | LI Jinheng, ZHANG Huixin, ZHANG Lingyan, et al. Two-dimensional covalent-organic frameworks for ultrahigh iodine capture[J]. Journal of Materials Chemistry A, 2020, 8(19): 9523-9527. |
| [25] | XU Yulong, WU Chengxin, CHU Ning, et al. Design and synthesis of stable sp2-carbon-linked two-dimensional conjugated covalent organic framework for efficient capture of iodine[J]. Separation and Purification Technology, 2023, 307: 122776. |
| [26] | YANG Yixuan, TANG Xihao, WU Jialin, et al. Transformation of a hydrazone-linked covalent organic framework into a highly stable hydrazide-linked one[J]. ACS Applied Polymer Materials, 2022, 4(7): 4624-4631. |
| [27] | YANG Yuling, XIONG Xiaohong, FAN Yaling, et al. Insight into volatile iodine uptake properties of covalent organic frameworks with different conjugated structures[J]. Journal of Solid State Chemistry, 2019, 279: 120979. |
| [28] | ZHOU Mingan, LI Zhongping, MUNYENTWALI Alexis, et al. Highly conjugated two-dimensional covalent organic frameworks for efficient iodine uptake[J]. Chemistry-An Asian Journal, 2022, 17(15): e202200358. |
| [29] | ZHAI Lipeng, HAN Diandian, DONG Jinhuan, et al. Constructing stable and porous covalent organic frameworks for efficient iodine vapor capture[J]. Macromolecular Rapid Communications, 2021, 42(13): 2100032. |
| [30] | ZHANG Shuyuan, TANG Xihao, YAN Yilun, et al. Facile and site-selective synthesis of an amine-functionalized covalent organic framework[J]. ACS Macro Letters, 2021, 10(12): 1590-1596. |
| [31] | ZHANG Lingyan, LI Jinheng, ZHANG Huixin, et al. High iodine uptake in two-dimensional covalent organic frameworks[J]. Chemical Communications, 2021, 57(45): 5558-5561. |
| [32] | JIANG Bo, QI Yue, LI Xiaofeng, et al. Efficient gaseous iodine capture enhanced by charge-induced effect of covalent organic frameworks with dense tertiary-amine nodes[J]. Chinese Chemical Letters, 2022, 33(7): 3556-3560. |
| [33] | PAN Xiaowei, QIN Xihao, ZHANG Qiheng, et al. N- and S-rich covalent organic framework for highly efficient removal of indigo carmine and reversible iodine capture[J]. Microporous and Mesoporous Materials, 2020, 296: 109990. |
| [34] | YAN Xi, YANG Yixin, LI Guorong, et al. Thiophene-based covalent organic frameworks for highly efficient iodine capture[J]. Chinese Chemical Letters, 2023, 34(1): 107201. |
| [35] | ZHAI Lipeng, SUN Shuzhuan, CHEN Pengjing, et al. Constructing cationic covalent organic frameworks by a post-function process for an exceptional iodine capture via electrostatic interactions[J]. Materials Chemistry Frontiers, 2021, 5(14): 5463-5470. |
| [36] | ZHAO Yuxiang, LIU Xin, LI Yongpeng, et al. Ultra-stable fluorescent 2D covalent organic framework for rapid adsorption and selective detection of radioiodine[J]. Microporous and Mesoporous Materials, 2021, 319: 111046. |
| [37] | ZOU Junyan, WEN Dan, ZHAO Yu. Flexible three-dimensional diacetylene functionalized covalent organic frameworks for efficient iodine capture[J]. Dalton Transactions, 2023, 52(3): 731-736. |
| [38] | LI Yuan, LI Xiaoguang, LI Jufeng, et al. Phosphine-based covalent organic framework for highly efficient iodine capture[J]. Microporous and Mesoporous Materials, 2021, 325: 111351. |
| [39] | WANG Guangbo, XIE Kehui, ZHU Fucheng, et al. Construction of tetrathiafulvalene-based covalent organic frameworks for superior iodine capture[J]. Chemical Research in Chinese Universities, 2022, 38(2): 409-414. |
| [40] | XIE Yaqiang, PAN Tingting, LEI Qiong, et al. Ionic functionalization of multivariate covalent organic frameworks to achieve an exceptionally high iodine-capture capacity[J]. Angewandte Chemie International Edition, 2021, 60(41): 22432-22440. |
| [41] | ZHU Dongyang, ZHU Yifan, YAN Qianqian, et al. Pure crystalline covalent organic framework aerogels[J]. Chemistry of Materials, 2021, 33(11): 4216-4224. |
| [42] | WANG Lingling, XU Changwen, ZHANG Weiqi, et al. Electrocleavage synthesis of solution-processed, imine-linked, and crystalline covalent organic framework thin films[J]. Journal of the American Chemical Society, 2022, 144(20): 8961-8968. |
| [43] | LI Yongqiang, LI Yarong, ZHAO Qinghua, et al. Cotton fiber functionalized with 2D covalent organic frameworks for iodine capture[J]. Cellulose, 2020, 27(3): 1517-1529. |
| [44] | LI Li, CHEN Run, LI Yarong, et al. Novel cotton fiber-covalent organic framework hybrid monolith for reversible capture of iodine[J]. Cellulose, 2020, 27(10): 5879-5892. |
| [1] | GAO Jiaojiao, YAN Shiyu, YANG Taishun, XIE Shangzhi, YANG Yanjuan, XU Jing. Effect of alumina support crystal structure of Ru-based catalysts on polyethylene hydrogenolysis performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3917-3927. |
| [2] | HAN Pei, LI Jinjian, KE Tian, ZHANG Zhiguo, BAO Zongbi, REN Qilong, YANG Qiwei. Advances in adsorption separation of sulfur hexafluoride/nitrogen by novel porous materials [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3592-3617. |
| [3] | CHEN Chongming, LI Dong, YU Jinxing, CHE Kai, HE Wei, CHEN Chuanmin. Adsorption performance of titanium based MXene aerogel for Hg(Ⅱ) in desulfurization wastewater [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3112-3120. |
| [4] | REN Pengkun, ZHONG Zhaoping, ZHANG Xiaoni, YANG Yuxuan, RAN Zhenzhen. Preparation of sludge-sawdust-based activated carbon and its adsorption performance for benzene series VOCs [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3031-3040. |
| [5] | LI Peiyi, SUN Bolong, LIU Ruiyan, ZHOU Xinyao, LIU Ruilin, HU Yuanyuan, XU Gongtao, LI Xinping. Preparation of sodium alginate/titanium dioxide composite porous material and its application in oil-water separation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3053-3061. |
| [6] | LUO Yiwen, ZHAO Liang, ZHANG Yuhao, LIU Dongyang, GAO Jinsen, XU Chunming. Progress on separation materials and mechanisms of light hydrocarbons [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2938-2954. |
| [7] | WANG Peigan, LI Leli, XIE Songzhuan, SONG Bingbing, KONG Qiaoping, LIU Gaige, MA Weiwei, SHI Xueqing. Phosphate adsorption mechanism of sludge-based FeCa-ALE composite material [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2365-2373. |
| [8] | CHEN Yuhang, LI Qiaoyan, LIANG Meisheng, SONG Tianyuan, WANG Yue, LI Simeng, ZHOU Yuxuan. Role of the Sn dopant on Cu/CeZrO2/γ-Al2O3 three-way catalyst: Enhancement of low-temperature activity and sulfur resistance [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1368-1377. |
| [9] | ZHANG Yi, YAO Qiuxiang, SUN Ming. Adsorption performance of natural clinoptilolite based analcime and its modifications on Pb2+ [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1726-1738. |
| [10] | ZHAO Kaiqiang, LIU Hao, DAI Zhenhua, SUN Zhenfeng, YANG Chao, MA Cheng. Research progress in preparation of high sulfur polymers from vegetable oils [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1454-1465. |
| [11] | ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, CHENG Meng, ZHANG Kui, LYU Yijun, MEN Zhuowu. Advances in Fe-based catalysts for conversion of syngas/CO2 to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1323-1337. |
| [12] | ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, FENG Bo, JIANG Zhihui, LYU Yijun, MEN Zhuowu. Advances in Co-based catalysts for syngas to higher alcohol [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 773-787. |
| [13] | ZHANG Aijing, WANG Zhenyu, XIAO Ningning, SONG Yanna, LI Jun, FENG Jiangtao, YAN Wei. Research progress on novel adsorption materials for mercury ion [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 899-913. |
| [14] | ZHAO Yu, SHI Ling, ZHANG Dongqiang, LI Ning. Synthesis of magnesium oxide adsorbent through the precipitation method and its adsorption mechanism for fluoride [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 971-981. |
| [15] | LI Zhuoyu, YU Meiqi, CHEN Xiaoyan, HU Ruohui, WANG Qinghong, CHEN Chunmao, ZHAN Yali. Effects and mechanism on the removal of nitrobenzene from water by adsorption of refining waste catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1076-1087. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |