Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 3950-3964.DOI: 10.16085/j.issn.1000-6613.2024-1026
• Materials science and technology • Previous Articles
RONG Liping1,2(
), LI Zhiguo1(
), WANG Gang2, ZHANG Dayong2, ZHOU Hongxia2, MI Changhong2, LI Xin2, ZHAO Ying2, ZHU Jinhua2, LIU Xiaohui2, LIU Ye2
Received:2024-06-25
Revised:2024-08-21
Online:2025-08-04
Published:2025-07-25
Contact:
LI Zhiguo
荣立平1,2(
), 李志国1(
), 王刚2, 张大勇2, 周红霞2, 米长虹2, 李欣2, 赵颖2, 朱金华2, 刘晓辉2, 刘野2
通讯作者:
李志国
作者简介:荣立平(1989—),男,博士研究生,研究方向为高分子胶黏剂。E-mail:rlpshy002@163.com。
基金资助:CLC Number:
RONG Liping, LI Zhiguo, WANG Gang, ZHANG Dayong, ZHOU Hongxia, MI Changhong, LI Xin, ZHAO Ying, ZHU Jinhua, LIU Xiaohui, LIU Ye. Advances in adhesives for wet bonding based on the catechol structure[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3950-3964.
荣立平, 李志国, 王刚, 张大勇, 周红霞, 米长虹, 李欣, 赵颖, 朱金华, 刘晓辉, 刘野. 基于邻苯二酚结构湿胶接用胶黏剂研究进展[J]. 化工进展, 2025, 44(7): 3950-3964.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1026
| [1] | SAIZ-POSEU J, MANCEBO-ARACIL J, NADOR F, et al. The chemistry behind catechol-based adhesion[J]. Angewandte Chemie International Edition, 2019, 58(3): 696-714. |
| [2] | STEWART Russell J. Protein-based underwater adhesives and the prospects for their biotechnological production[J]. Applied Microbiology and Biotechnology, 2011, 89(1): 27-33. |
| [3] | XU Ying, LIU Qianhui, NARAYANAN Amal, et al. Mussel-inspired polyesters with aliphatic pendant groups demonstrate the importance of hydrophobicity in underwater adhesion[J]. Advanced Materials Interfaces, 2017, 4(22): 1700506. |
| [4] | 鲁文茜, 沈尚竹, 赵亚丽, 等. 仿贻贝邻苯二酚改性壳聚糖在生物医学领域的应用及研究进展[J]. 中国胶粘剂, 2020, 29(11): 56-60, 66. |
| LU Wenxi, SHEN Shangzhu, ZHAO Yali, et al. Application and research progress of mussel like catechol modified chitosan in biomedical field[J]. China Adhesives, 2020, 29(11): 56-60, 66. | |
| [5] | ZHANG Wei, WANG Ruixing, SUN Zhengming, et al. Catechol-functionalized hydrogels: Biomimetic design, adhesion mechanism, and biomedical applications[J]. Chemical Society Reviews, 2020, 49(2): 433-464. |
| [6] | NARAYANAN Amal, DHINOJWALA Ali, Abraham JOY. Design principles for creating synthetic underwater adhesives[J]. Chemical Society Reviews, 2021, 50(23): 13321-13345. |
| [7] | FAN Hailong, GONG Jianping. Bioinspired underwater adhesives[J]. Advanced Materials, 2021, 33(44): 2102983. |
| [8] | MYSLICKI Sebastian, KORDY Heinrich, KAUFMANN Marvin, et al. Under water glued stud bonding fasteners for offshore structures[J]. International Journal of Adhesion and Adhesives, 2020, 98: 102533. |
| [9] | CUI Chunyan, LIU Wenguang. Recent advances in wet adhesives: Adhesion mechanism, design principle and applications[J]. Progress in Polymer Science, 2021, 116: 101388. |
| [10] | LI Sidi, MA Chu’ao, HOU Bin, et al. Rational design of adhesives for effective underwater bonding[J]. Frontiers in Chemistry, 2022, 10: 1007212. |
| [11] | SUN Chengjun, SRIVASTAVA Aasheesh, REIFERT Jack R, et al. Halogenated DOPA in a marine adhesive protein[J]. Journal of Adhesion, 2009, 85(2/3): 126-138. |
| [12] | GAN Kesheng, LIANG Chao, BI Xiangyun, et al. Adhesive materials inspired by barnacle underwater adhesion: Biological principles and biomimetic designs[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 870445. |
| [13] | PETRONE Luigi, KUMAR Akshita, SUTANTO Clarinda N, et al. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins[J]. Nature Communications, 2015, 6: 8737. |
| [14] | 汪丹丹, 徐平平, 王硕硕. 仿生贻贝黏附水凝胶研究进展[J]. 化学工程与装备, 2018(6): 208-211. |
| WANG Dandan, XU Pingping, WANG Shuoshuo. Research progress of biomimetic mussel adhesive hydrogel[J]. Chemical Engineering & Equipment, 2018(6): 208-211. | |
| [15] | DEMARTINI Daniel G, ERRICO John M, SJOESTROEM Sebastian, et al. A cohort of new adhesive proteins identified from transcriptomic analysis of mussel foot glands[J]. Journal of the Royal Society Interface, 2017, 14(131): 20170151. |
| [16] | FAN Xianmou, FANG Yan, ZHOU Weikang, et al. Mussel foot protein inspired tough tissue-selective underwater adhesive hydrogel[J]. Materials Horizons, 2021, 8(3): 997-1007. |
| [17] | LI Lin, ZENG Hongbo. Marine mussel adhesion and bio-inspired wet adhesives[J]. Biotribology, 2016, 5: 44-51. |
| [18] | CHEN Jingsi, ZENG Hongbo. Designing bio-inspired wet adhesives through tunable molecular interactions[J]. Journal of Colloid and Interface Science, 2023, 645: 591-606. |
| [19] | HOFMAN Anton H, VAN HEES Ilse A, YANG Juan, et al. Bioinspired underwater adhesives by using the supramolecular toolbox[J]. Advanced Materials, 2018, 30(19): 1704640. |
| [20] | ZHANG Ke, ZHANG Feilong, SONG Yongyang, et al. Recent progress of mussel-inspired underwater adhesives[J]. Chinese Journal of Chemistry, 2017, 35(6): 811-820. |
| [21] | Herbert WAITE J, QIN Xiaoxia. Polyphosphoprotein from the adhesive pads of Mytilus edulis [J]. Biochemistry, 2001, 40(9): 2887-2893. |
| [22] | LI Yiran, CAO Yi. The molecular mechanisms underlying mussel adhesion[J]. Nanoscale Advances, 2019, 1(11): 4246-4257. |
| [23] | FU Yifu, REN Pengfei, WANG Faming, et al. Mussel-inspired hybrid network hydrogel for continuous adhesion in water[J]. Journal of Materials Chemistry B, 2020, 8(10): 2148-2154. |
| [24] | REN Jingli, KONG Ruixia, WANG Huiying, et al. Robust underwater adhesion of catechol-functionalized polymer triggered by water exchange[J]. Small Methods, 2023, 7(6): 2201235. |
| [25] | LEE Su Yeon, LEE Jee Na, CHATHURANGA Kiramage, et al. Tunicate-inspired polyallylamine-based hydrogels for wet adhesion: A comparative study of catechol- and gallol-functionalities[J]. Journal of Colloid and Interface Science, 2021, 601: 143-155. |
| [26] | Herbert WAITE J, TANZER Marvin L. Polyphenolic substance of Mytilus edulis: Novel adhesive containing L-DOPA and hydroxyproline[J]. Science, 1981, 212(4498): 1038-1040. |
| [27] | LI Sidi, CHEN Ning, LI Xueping, et al. Bioinspired double-dynamic-bond crosslinked bioadhesive enables post-wound closure care[J]. Advanced Functional Materials, 2020, 30(17): 2000130. |
| [28] | BAI Shumeng, ZHANG Mengya, HUANG Xiaowei, et al. A bioinspired mineral-organic composite hydrogel as a self-healable and mechanically robust bone graft for promoting bone regeneration[J]. Chemical Engineering Journal, 2021, 413: 127512. |
| [29] | FAN Hailong, WANG Jiahui, TAO Zhen, et al. Adjacent cationic-aromatic sequences yield strong electrostatic adhesion of hydrogels in seawater[J]. Nature Communications, 2019, 10(1): 5127. |
| [30] | BAI Shumeng, ZHANG Xueliang, Xueli LYU, et al. Bioinspired mineral-organic bone adhesives for stable fracture fixation and accelerated bone regeneration[J]. Advanced Functional Materials, 2020, 30(5): 1908381. |
| [31] | Manuel PÜHRINGER, PAULIK Christian, BRETTERBAUER Klaus. Synthesis and characterization of polyacrylamide-based biomimetic underwater adhesives[J]. Monatshefte Für Chemie - Chemical Monthly, 2023, 154(5): 503-513. |
| [32] | BONDA Lorand, Janita MÜLLER, FISCHER Lukas, et al. Facile synthesis of catechol-containing polyacrylamide copolymers: Synergistic effects of amine, amide and catechol residues in mussel-inspired adhesives[J]. Polymers, 2023, 15(18): 3663. |
| [33] | LI Ying, LIANG Chao, GAO Ling, et al. Hidden complexity of synergistic roles of DOPA and lysine for strong wet adhesion[J]. Materials Chemistry Frontiers, 2017, 1(12): 2664-2668. |
| [34] | BARROS Natan Roberto, CHEN Yi, HOSSEINI Vahid, et al. Recent developments in mussel-inspired materials for biomedical applications[J]. Biomaterials Science, 2021, 9(20): 6653-6672. |
| [35] | QUAN Weiyan, HU Zhang, LIU Huazhong, et al. Mussel-inspired catechol-functionalized hydrogels and their medical applications[J]. Molecules, 2019, 24(14): 2586. |
| [36] | FOROOSHANI Pegah Kord, LEE Bruce P. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(1): 9-33. |
| [37] | GUO Qi, CHEN Jingsi, WANG Jilei, et al. Recent progress in synthesis and application of mussel-inspired adhesives[J]. Nanoscale, 2020, 12(3): 1307-1324. |
| [38] | CHEN Tao, CHEN Yujie, REHMAN Hafeez Ur, et al. Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing[J]. ACS Applied Materials & Interfaces, 2018, 10(39): 33523-33531. |
| [39] | KIM Hyo Jeong, YANG Byeongseon, PARK Tae Yoon, et al. Complex coacervates based on recombinant mussel adhesive proteins: Their characterization and applications[J]. Soft Matter, 2017, 13(42): 7704-7716. |
| [40] | LEE Bruce P, NARKAR Ameya, WILHARM Randall. Effect of metal ion type on the movement of hydrogel actuator based on catechol-metal ion coordination chemistry[J]. Sensors and Actuators B: Chemical, 2016, 227: 248-254. |
| [41] | ZHOU Yalin, ZHAO Jin, SUN Xiaolei, et al. Rapid gelling chitosan/polylysine hydrogel with enhanced bulk cohesive and interfacial adhesive force: Mimicking features of epineurial matrix for peripheral nerve anastomosis[J]. Biomacromolecules, 2016, 17(2): 622-630. |
| [42] | LE THI Phuong, LEE Yunki, NGUYEN Dai Hai, et al. In situ forming gelatin hydrogels by dual-enzymatic cross-linking for enhanced tissue adhesiveness[J]. Journal of Materials Chemistry B, 2017, 5(4): 757-764. |
| [43] | CHEN Wei, WANG Rui, XU Tingting, et al. A mussel-inspired poly(γ-glutamic acid) tissue adhesive with high wet strength for wound closure[J]. Journal of Materials Chemistry B, 2017, 5(28): 5668-5678. |
| [44] | RAJA S. Thirupathi Kumar, THIRUSELVI T, SAILAKSHMI G,et al. Rejoining of cut wounds by engineered gelatin-keratin glue[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2013, 1830(8): 4030-4039. |
| [45] | 邓俊杰. 基于贻贝启迪的仿生组织黏合剂的制备与性能研究[D]. 广州: 华南理工大学, 2019. |
| DENG Junjie. Study on the construction and properties of mussel-inspired biomimetic tissue adhesive[D]. Guangzhou: South China University of Technology, 2019. | |
| [46] | FAURE Emilie, Céline FALENTIN-DAUDRÉ, Christine JÉRÔME, et al. Catechols as versatile platforms in polymer chemistry[J]. Progress in Polymer Science, 2013, 38(1): 236-270. |
| [47] | Ji Hyun RYU, LEE Yuhan, KONG Won Ho, et al. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials[J]. Biomacromolecules, 2011, 12(7): 2653-2659. |
| [48] | YANG Huishang, LAI Chen, XUAN Chengkai, et al. Integrin-binding pro-survival peptide engineered silk fibroin nanosheets for diabetic wound healing and skin regeneration[J]. Chemical Engineering Journal, 2020, 398: 125617. |
| [49] | HE Xiaoyan, LIU Liqin, HAN Huimin, et al. Bioinspired and microgel-tackified adhesive hydrogel with rapid self-healing and high stretchability[J]. Macromolecules, 2019, 52(1): 72-80. |
| [50] | SHEN Yazhen, DU Changwen, ZHOU Jianmin, et al. Application of nano FeⅢ-tannic acid complexes in modifying aqueous acrylic latex for controlled-release coated urea[J]. Journal of Agricultural and Food Chemistry, 2017, 65(5): 1030-1036. |
| [51] | 武泽林. 基于邻苯二酚结构的仿贻贝黏附蛋白聚合物的制备及其应用研究[D]. 武汉: 武汉工程大学, 2017. |
| WU Zelin. Study on preparation and application of mussel-inspired polymers based on catechol structure[D]. Wuhan: Wuhan Institute of Technology, 2017. | |
| [52] | NORTH Michael A, DEL GROSSO Chelsey A, WILKER Jonathan J. High strength underwater bonding with polymer mimics of mussel adhesive proteins[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7866-7872. |
| [53] | NISHIDA Jin, KOBAYASHI Motoyasu, TAKAHARA Atsushi. Gelation and adhesion behavior of mussel adhesive protein mimetic polymer[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2013, 51(5): 1058-1065. |
| [54] | XIONG Xiong, LIU Yumei, SHI Feng, et al. Enhanced adhesion of mussel-inspired adhesive through manipulating contents of DOPAmine methacrylamide and molecular weight of polymer[J]. Journal of Bionic Engineering, 2018, 15(3): 461-470. |
| [55] | SHA Xinyi, ZHANG Changxu, QI Meiwei, et al. Mussel-inspired alternating copolymer as a high-performance adhesive material both at dry and under-seawater conditions[J]. Macromolecular Rapid Communications, 2020, 41(10): 2000055. |
| [56] | YU Jinhong, CHENG Bohan, EJIMA Hirotaka. Effect of molecular weight and polymer composition on gallol-functionalized underwater adhesive[J]. Journal of Materials Chemistry B, 2020, 8(31): 6798-6801. |
| [57] | LEE Jee Na, LEE Su Yeon, PARK Won Ho. Bioinspired self-healable polyallylamine-based hydrogels for wet adhesion: Synergistic contributions of catechol-amino functionalities and nanosilicate[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 18324-18337. |
| [58] | 李高明. 基于邻苯二酚的高耐久性环氧结构胶的分子结构设计与制备研究[D]. 绵阳: 西南科技大学, 2022. |
| LI Gaoming. Molecular structure design and preparation of high-durability epoxy structural adhesive based on catechol group[D]. Mianyang: Southwest University of Science and Technology, 2022. | |
| [59] | MOULAY Saad. Dopa/catechol-tethered polymers: Bioadhesives and biomimetic adhesive materials[J]. Polymer Reviews, 2014, 54(3): 436-513. |
| [60] | ZHANG Feng, LIU Siwei, ZHANG Yi, et al. Underwater bonding strength of marine mussel-inspired polymers containing DOPA-like units with amino groups[J]. RSC Advances, 2012, 2(24): 8919-8921. |
| [61] | Brylee David B TIU, DELPARASTAN Peyman, NEY Max R, et al. Cooperativity of catechols and amines in high-performance dry/wet adhesives[J]. Angewandte Chemie International Edition, 2020, 59(38): 16616-16624. |
| [62] | WHITE James D, WILKER Jonathan J. Underwater bonding with charged polymer mimics of marine mussel adhesive proteins[J]. Macromolecules, 2011, 44(13): 5085-5088. |
| [63] | Ji Hyun RYU, KIM Hye Jin, KIM Kyuri, et al. Multipurpose intraperitoneal adhesive patches[J]. Advanced Functional Materials, 2019, 29(29): 1900495. |
| [64] | ZHANG Rui, PENG Hongwei, ZHOU Tianxu, et al. Constructing high performance hydrogels with strong underwater adhesion through a “mussel feet-rock” inspired strategy[J]. ACS Applied Polymer Materials, 2019, 1(11): 2883-2889. |
| [65] | MU Youbing, MU Pengzhou, WU Xiao, et al. The two facets of the synergic effect of amine cation and catechol on the adhesion of catechol in underwater conditions[J]. Applied Surface Science, 2020, 530: 146973. |
| [66] | WANG Weina, XU Yisheng, LI Ang, et al. Zinc induced polyelectrolyte coacervate bioadhesive and its transition to a self-healing hydrogel[J]. RSC Advances, 2015, 5(82): 66871-66878. |
| [67] | CHOLEWINSKI Aleksander, YANG Fut, ZHAO Boxin. Algae-mussel-inspired hydrogel composite glue for underwater bonding[J]. Materials Horizons, 2019, 6(2): 285-293. |
| [68] | WU Tengling, CUI Chunyan, HUANG Yuting, et al. Coadministration of an adhesive conductive hydrogel patch and an injectable hydrogel to treat myocardial infarction[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2039-2048. |
| [69] | ZHAO Xin, LIANG Yongping, HUANG Ying, et al. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing[J]. Advanced Functional Materials, 2020, 30(17): 1910748. |
| [70] | LEE Daiheon, HWANG Honggu, KIM Jun-Sung, et al. VATA: A poly(vinyl alcohol)- and tannic acid-based nontoxic underwater adhesive[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20933-20941. |
| [71] | MU Youbing, WU Xiao, PEI Danfeng, et al. Contribution of the polarity of mussel-inspired adhesives in the realization of strong underwater bonding[J]. ACS Biomaterials Science & Engineering, 2017, 3(12): 3133-3140. |
| [72] | CUI Chunyan, FAN Chuanchuan, WU Yuanhao, et al. Water-triggered hyperbranched polymer universal adhesives: From strong underwater adhesion to rapid sealing hemostasis[J]. Advanced Materials, 2019, 31(49): 1905761. |
| [73] | HOLOWKA Eric P, DEMING Timothy J. Synthesis and crosslinking of L-DOPA containing polypeptide vesicles[J]. Macromolecular Bioscience, 2010, 10(5): 496-502. |
| [74] | LIU Ying, ZHAO Chenyu, SONG Changtong, et al. A mussel inspired polyvinyl alcohol/collagen/tannic acid bioadhesive for wet adhesion and hemostasis[J]. Colloids and Surfaces B: Biointerfaces, 2024, 235: 113766. |
| [75] | LIU Huan, QIN Sumei, LIU Jia, et al. Bio-inspired self-hydrophobized sericin adhesive with tough underwater adhesion enables wound healing and fluid leakage sealing[J]. Advanced Functional Materials, 2022, 32(32): 2201108. |
| [76] | HU Shanshan, PEI Xibo, DUAN Lunliang, et al. A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery[J]. Nature Communications, 2021, 12(1): 1689. |
| [77] | XIA Guozheng, LIN Mei, YI Jiayu, et al. Solvent-free mussel-inspired adhesive with rapid underwater curing capability[J]. Advanced Materials Interfaces, 2021, 8(21): 2101544. |
| [78] | LI Lin, LIU Jiawei, CHEN Jia, et al. Mussel-inspired hydrogel particles with selective adhesion characteristics for applications in reservoir fracture control[J]. Journal of Molecular Liquids, 2022, 361: 119598. |
| [1] | LIN Mei, LEI Yu, LI Ping, ZHANG Qiang. Interface adhesion performance and adhesion mechanism between graphene/rubber composite modified asphalt and aggregate [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 991-1002. |
| [2] | Chun LI, Lixia SUN, Jianhua SUN, Liqin ZHOU, Dapeng XU, Youquan ZHANG, Dankui LIAO. Fabrication of Tyr biosensor for detection of catechol based on the ZnO with electrospinning [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2795-2801. |
| [3] | Peng WANG, Yazhou CHANG, Lin SHI, Di LANG, Di ZHANG. Efficient removal mechanism of catechol by Fe2O3 modified montmorillonite [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 1122-1128. |
| [4] | MA Huan,QI Shuhua,ZHANG Fan,SHI Jinling. Preparation and properties of electrically conductive pressure-sensitive adhesives using composite fillers and polyacrylate [J]. Chemical Industry and Engineering Progree, 2014, 33(07): 1791-1795. |
| [5] | HE Tianping,MA Rongsheng,ZHANG Danhui,JIAN Xiangjie. Study on O-hydroxy by ethylation of diethyl carbonate and catechol [J]. Chemical Industry and Engineering Progree, 2009, 28(6): 1027-. |
| [6] | FENG Huisheng,CHEN Wenfeng,REN Hongdong,LI Ling. Separation of phenol hydroxylation mixture by multi-stage extraction and complexation extraction by hydroxylation with tributyl phosphate [J]. Chemical Industry and Engineering Progree, 2008, 27(10): 1618-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |