Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 991-1002.DOI: 10.16085/j.issn.1000-6613.2024-0224
• Materials science and technology • Previous Articles Next Articles
LIN Mei1(), LEI Yu2,3, LI Ping1, ZHANG Qiang4
Received:
2024-01-30
Revised:
2024-05-16
Online:
2025-03-10
Published:
2025-02-25
Contact:
LIN Mei
通讯作者:
林梅
作者简介:
林梅(1983—),女,副教授,硕士生导师,研究方向为新型绿色环保功能型沥青材料。E-mail:280759800@qq.com。
基金资助:
CLC Number:
LIN Mei, LEI Yu, LI Ping, ZHANG Qiang. Interface adhesion performance and adhesion mechanism between graphene/rubber composite modified asphalt and aggregate[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 991-1002.
林梅, 雷雨, 李萍, 张强. 石墨烯/橡胶复合改性沥青-集料界面黏附性能及机理[J]. 化工进展, 2025, 44(2): 991-1002.
检测指标 | 实验结果 | 技术要求 | 实验方法 |
---|---|---|---|
针入度(25℃)/×0.1mm | 81 | 80~100 | T0604 |
针入度指数 | -1.46 | -1.5~+1.0 | T0604 |
软化点/℃ | 45 | ≥44 | T0606 |
延度(5℃)/cm | 78.6 | — | T0605 |
旋转薄膜加热后 | |||
质量变化/% | -0.02 | -0.4~+0.4 | T0609 |
残留针入度比(25℃)/% | 65 | ≥57 | T0604 |
残留延度(10℃)/cm | 9 | ≥8 | T0605 |
检测指标 | 实验结果 | 技术要求 | 实验方法 |
---|---|---|---|
针入度(25℃)/×0.1mm | 81 | 80~100 | T0604 |
针入度指数 | -1.46 | -1.5~+1.0 | T0604 |
软化点/℃ | 45 | ≥44 | T0606 |
延度(5℃)/cm | 78.6 | — | T0605 |
旋转薄膜加热后 | |||
质量变化/% | -0.02 | -0.4~+0.4 | T0609 |
残留针入度比(25℃)/% | 65 | ≥57 | T0604 |
残留延度(10℃)/cm | 9 | ≥8 | T0605 |
检测指标 | 实验结果 | 技术要求 | 实验方法 |
---|---|---|---|
体积密度/kg·m-3 | 1.16 | 1.10~1.30 | GB/T19208 |
金属质量分数/% | 0.01 | <0.05 | GB/T19208 |
纤维质量分数/% | 0.065 | <1.0 | GB/T19208 |
灰分/% | 6.50 | ≤9 | GB4498 |
丙酮抽出物/% | 8 | ≤22 | GB/T3516 |
碳黑质量分数/% | 33 | ≥24 | GB/T14837 |
橡胶烃质量分数/% | 55 | ≥42 | GB/T14837 |
检测指标 | 实验结果 | 技术要求 | 实验方法 |
---|---|---|---|
体积密度/kg·m-3 | 1.16 | 1.10~1.30 | GB/T19208 |
金属质量分数/% | 0.01 | <0.05 | GB/T19208 |
纤维质量分数/% | 0.065 | <1.0 | GB/T19208 |
灰分/% | 6.50 | ≤9 | GB4498 |
丙酮抽出物/% | 8 | ≤22 | GB/T3516 |
碳黑质量分数/% | 33 | ≥24 | GB/T14837 |
橡胶烃质量分数/% | 55 | ≥42 | GB/T14837 |
检测指标 | 实验结果 | 技术要求 |
---|---|---|
堆积密度/g·mL-1 | 0.0135 | 0.01~0.02 |
碳质量分数/% | 65 | — |
比表面积/m2·g-1 | 1100 | 1000-1217 |
含水率/% | 0.18 | <2 |
pH | 6.5 | — |
检测指标 | 实验结果 | 技术要求 |
---|---|---|
堆积密度/g·mL-1 | 0.0135 | 0.01~0.02 |
碳质量分数/% | 65 | — |
比表面积/m2·g-1 | 1100 | 1000-1217 |
含水率/% | 0.18 | <2 |
pH | 6.5 | — |
检测指标 | 实验结果 | 技术 要求 | 方法 实验 | ||
---|---|---|---|---|---|
花岗岩 | 石灰岩 | 玄武岩 | |||
压碎值/% | 19.1 | 13.1 | 10.8 | ≤26 | T0316 |
洛杉矶磨耗值/% | 15.1 | 12.5 | 10 | ≤28 | T0323 |
表观密度/g·cm-3 | 2.808 | 2.832 | 2.865 | ≥2.6 | T0304 |
吸水率/% | 0.2 | 0.5 | 0.3 | ≤2 | T0307 |
SiO2质量分数/% | 74.81 | 13.64 | 55.79 | — | — |
针片状颗粒质量分数/% | 8.3 | 3 | 7.12 | ≤15 | T0312 |
检测指标 | 实验结果 | 技术 要求 | 方法 实验 | ||
---|---|---|---|---|---|
花岗岩 | 石灰岩 | 玄武岩 | |||
压碎值/% | 19.1 | 13.1 | 10.8 | ≤26 | T0316 |
洛杉矶磨耗值/% | 15.1 | 12.5 | 10 | ≤28 | T0323 |
表观密度/g·cm-3 | 2.808 | 2.832 | 2.865 | ≥2.6 | T0304 |
吸水率/% | 0.2 | 0.5 | 0.3 | ≤2 | T0307 |
SiO2质量分数/% | 74.81 | 13.64 | 55.79 | — | — |
针片状颗粒质量分数/% | 8.3 | 3 | 7.12 | ≤15 | T0312 |
测试液 | 化学式 | 总表面能γl | 色散分量 | 极性分量 |
---|---|---|---|---|
蒸馏水 | H2O | 72.80 | 22.20 | 51.00 |
丙三醇 | C3H8O3 | 63.40 | 33.40 | 30.00 |
甲酰胺 | CH3NO | 57.90 | 38.90 | 19.00 |
测试液 | 化学式 | 总表面能γl | 色散分量 | 极性分量 |
---|---|---|---|---|
蒸馏水 | H2O | 72.80 | 22.20 | 51.00 |
丙三醇 | C3H8O3 | 63.40 | 33.40 | 30.00 |
甲酰胺 | CH3NO | 57.90 | 38.90 | 19.00 |
组分 | 化学式 | 物质的量/g·mol-1 | 质量分数/% | 实验结果[ |
---|---|---|---|---|
沥青质 | C53H55NOS | 754.089 | 7.2 | 7.25 |
胶质 | C18H10S2 | 290.398 | 20.9 | 20.74 |
饱和分 | C22H46 | 310.610 | 22.6 | 22.54 |
芳香分 | C12H12 | 156.228 | 49.3 | 49.47 |
橡胶 | C69H98 | 819.444 | 18.0 | 18.24 |
石墨烯 | C48H18 | 594.672 | 0.4 | 0.3 |
组分 | 化学式 | 物质的量/g·mol-1 | 质量分数/% | 实验结果[ |
---|---|---|---|---|
沥青质 | C53H55NOS | 754.089 | 7.2 | 7.25 |
胶质 | C18H10S2 | 290.398 | 20.9 | 20.74 |
饱和分 | C22H46 | 310.610 | 22.6 | 22.54 |
芳香分 | C12H12 | 156.228 | 49.3 | 49.47 |
橡胶 | C69H98 | 819.444 | 18.0 | 18.24 |
石墨烯 | C48H18 | 594.672 | 0.4 | 0.3 |
矿物类型 | 化学式 | 晶格常数 | 超晶胞参数 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
长度/Å | 角度/(°) | 常见暴露面 | U、V | 超晶胞尺寸/Å | ||||||
a | b | c | α | β | γ | |||||
石英 | SiO2 | 4.913 | 4.913 | 5.4052 | 90 | 90 | 120 | (001) | U=9、V=9 | 44.217×44.217×20.976 |
方解石 | CaCO3 | 4.990 | 4.990 | 17.061 | 90 | 90 | 120 | (104) | U=6、V=10 | 48.575×49.900×22.809 |
钠长石 | NaAlSi3O8 | 8.115 | 12.762 | 7.157 | 94.218 | 116.803 | 87.707 | (100) | U=4、V=7 | 51.048×50.103×36.163 |
矿物类型 | 化学式 | 晶格常数 | 超晶胞参数 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
长度/Å | 角度/(°) | 常见暴露面 | U、V | 超晶胞尺寸/Å | ||||||
a | b | c | α | β | γ | |||||
石英 | SiO2 | 4.913 | 4.913 | 5.4052 | 90 | 90 | 120 | (001) | U=9、V=9 | 44.217×44.217×20.976 |
方解石 | CaCO3 | 4.990 | 4.990 | 17.061 | 90 | 90 | 120 | (104) | U=6、V=10 | 48.575×49.900×22.809 |
钠长石 | NaAlSi3O8 | 8.115 | 12.762 | 7.157 | 94.218 | 116.803 | 87.707 | (100) | U=4、V=7 | 51.048×50.103×36.163 |
沥青种类 | 集料种类 | 酚藏花红溶液起始浓度C0/mg·mL-1 | 集料吸附后溶液浓度C1/mg·mL-1 | 酚藏花红 溶液体积V/mL | 集料质量/g | 混合料吸附后 溶液浓度/ mg·mL-1 | 集料吸附量q/mg·g-1 | 混合料剥落 试验后吸附量q'/ mg·g-1 | 剥落度St(q)/% | 黏附性 Ad/% |
---|---|---|---|---|---|---|---|---|---|---|
SK-90 | 花岗岩 | 0.01 | 0.00133 | 200 | 100 | 0.00532 | 0.01734 | 0.00936 | 53.98 | 46.02 |
玄武岩 | 0.01 | 0.00786 | 200 | 100 | 0.00938 | 0.00428 | 0.00124 | 28.97 | 71.03 | |
石灰岩 | 0.01 | 0.00626 | 200 | 100 | 0.00944 | 0.00748 | 0.00112 | 14.97 | 85.03 | |
橡胶改性沥青 | 花岗岩 | 0.01 | 0.00133 | 200 | 100 | 0.00780 | 0.01734 | 0.0044 | 25.37 | 74.63 |
玄武岩 | 0.01 | 0.00786 | 200 | 100 | 0.00953 | 0.00428 | 0.00094 | 21.96 | 78.04 | |
石灰岩 | 0.01 | 0.00626 | 200 | 100 | 0.00966 | 0.00748 | 0.00068 | 9.09 | 90.91 | |
石墨烯/橡胶 复合改性沥青 | 花岗岩 | 0.01 | 0.00133 | 200 | 100 | 0.00792 | 0.01734 | 0.00416 | 23.99 | 76.01 |
玄武岩 | 0.01 | 0.00786 | 200 | 100 | 0.00959 | 0.00428 | 0.00082 | 19.16 | 80.84 | |
石灰岩 | 0.01 | 0.00626 | 200 | 100 | 0.00979 | 0.00748 | 0.00042 | 5.61 | 94.39 |
沥青种类 | 集料种类 | 酚藏花红溶液起始浓度C0/mg·mL-1 | 集料吸附后溶液浓度C1/mg·mL-1 | 酚藏花红 溶液体积V/mL | 集料质量/g | 混合料吸附后 溶液浓度/ mg·mL-1 | 集料吸附量q/mg·g-1 | 混合料剥落 试验后吸附量q'/ mg·g-1 | 剥落度St(q)/% | 黏附性 Ad/% |
---|---|---|---|---|---|---|---|---|---|---|
SK-90 | 花岗岩 | 0.01 | 0.00133 | 200 | 100 | 0.00532 | 0.01734 | 0.00936 | 53.98 | 46.02 |
玄武岩 | 0.01 | 0.00786 | 200 | 100 | 0.00938 | 0.00428 | 0.00124 | 28.97 | 71.03 | |
石灰岩 | 0.01 | 0.00626 | 200 | 100 | 0.00944 | 0.00748 | 0.00112 | 14.97 | 85.03 | |
橡胶改性沥青 | 花岗岩 | 0.01 | 0.00133 | 200 | 100 | 0.00780 | 0.01734 | 0.0044 | 25.37 | 74.63 |
玄武岩 | 0.01 | 0.00786 | 200 | 100 | 0.00953 | 0.00428 | 0.00094 | 21.96 | 78.04 | |
石灰岩 | 0.01 | 0.00626 | 200 | 100 | 0.00966 | 0.00748 | 0.00068 | 9.09 | 90.91 | |
石墨烯/橡胶 复合改性沥青 | 花岗岩 | 0.01 | 0.00133 | 200 | 100 | 0.00792 | 0.01734 | 0.00416 | 23.99 | 76.01 |
玄武岩 | 0.01 | 0.00786 | 200 | 100 | 0.00959 | 0.00428 | 0.00082 | 19.16 | 80.84 | |
石灰岩 | 0.01 | 0.00626 | 200 | 100 | 0.00979 | 0.00748 | 0.00042 | 5.61 | 94.39 |
沥青种类 | 接触角/(°) | ||
---|---|---|---|
蒸馏水 | 丙三醇 | 甲酰胺 | |
基质沥青 | 90.223 | 81.469 | 85.927 |
橡胶改性沥青 | 81.753 | 67.049 | 58.790 |
石墨烯/橡胶改性沥青 | 81.152 | 64.698 | 57.880 |
沥青种类 | 接触角/(°) | ||
---|---|---|---|
蒸馏水 | 丙三醇 | 甲酰胺 | |
基质沥青 | 90.223 | 81.469 | 85.927 |
橡胶改性沥青 | 81.753 | 67.049 | 58.790 |
石墨烯/橡胶改性沥青 | 81.152 | 64.698 | 57.880 |
集料种类 | 接触角/(°) | ||
---|---|---|---|
蒸馏水 | 丙三醇 | 甲酰胺 | |
花岗岩 | 76.001 | 97.652 | 56.220 |
玄武岩 | 61.664 | 77.753 | 41.084 |
石灰岩 | 50.020 | 66.761 | 32.680 |
集料种类 | 接触角/(°) | ||
---|---|---|---|
蒸馏水 | 丙三醇 | 甲酰胺 | |
花岗岩 | 76.001 | 97.652 | 56.220 |
玄武岩 | 61.664 | 77.753 | 41.084 |
石灰岩 | 50.020 | 66.761 | 32.680 |
沥青种类 | 花岗岩(SiO2) | 玄武岩(CaCO3) | 石灰岩(NaAlSi3O8) | ||||||
---|---|---|---|---|---|---|---|---|---|
光电比色法 | 接触 角法 | 分子动力学模拟 | 光电比色法 | 接触角法 | 分子动力 学模拟 | 光电比色法 | 接触角法 | 分子动力 学模拟 | |
基质沥青 | 46.02 | 43.436 | 67.17 | 71.03 | 52.653 | 119.39 | 85.03 | 57.176 | 11480.82 |
橡胶改性沥青 | 74.63 | 51.304 | 84.89 | 78.04 | 62.008 | 132.29 | 90.91 | 66.039 | 12842.63 |
石墨烯/橡胶复合改性沥青 | 76.01 | 53.009 | 89.39 | 80.84 | 64.064 | 137.18 | 94.39 | 68.198 | 12950.86 |
沥青种类 | 花岗岩(SiO2) | 玄武岩(CaCO3) | 石灰岩(NaAlSi3O8) | ||||||
---|---|---|---|---|---|---|---|---|---|
光电比色法 | 接触 角法 | 分子动力学模拟 | 光电比色法 | 接触角法 | 分子动力 学模拟 | 光电比色法 | 接触角法 | 分子动力 学模拟 | |
基质沥青 | 46.02 | 43.436 | 67.17 | 71.03 | 52.653 | 119.39 | 85.03 | 57.176 | 11480.82 |
橡胶改性沥青 | 74.63 | 51.304 | 84.89 | 78.04 | 62.008 | 132.29 | 90.91 | 66.039 | 12842.63 |
石墨烯/橡胶复合改性沥青 | 76.01 | 53.009 | 89.39 | 80.84 | 64.064 | 137.18 | 94.39 | 68.198 | 12950.86 |
1 | 谢娟, 陈学儒, 罗浩宸, 等. 不同活化方式对橡胶沥青-集料黏附性的影响[J]. 表面技术, 2023, 52(9): 322-330. |
XIE Juan, CHEN Xueru, LUO Haochen, et al. Effect of different activation methods on adhesion performance of rubber asphalt-aggregate[J]. Surface Technology, 2023, 52(9): 322-330. | |
2 | 罗磊. 沥青与矿料界面相互作用的分子动力学模拟研究[D]. 西安: 长安大学, 2021. |
LUO Lei. Molecular dynamics simulation of asphalt-aggregate interfacial interaction[D]. Xi’an: Chang’an University, 2021. | |
3 | YAO Hui, DAI Qingli, YOU Zhanping, et al. Rheological properties, low-temperature cracking resistance, and optical performance of exfoliated graphite nanoplatelets modified asphalt binder[J]. Construction and Building Materials, 2016, 113: 988-996. |
4 | 孟勇军, 郭贺源, 徐锐光, 等. 石墨烯橡胶复合改性沥青流变性能及微观性能[J]. 建筑材料学报, 2020, 23(5): 1246-1251. |
MENG Yongjun, GUO Heyuan, XU Ruiguang, et al. Rheological and microscopic properties of graphene rubber composite modified asphalt[J]. Journal of Building Materials, 2020, 23(5): 1246-1251. | |
5 | 包得祥, 曹青霞, 张富奎, 等. 石墨烯对橡胶复合改性沥青抗老化性能的影响[J]. 建筑材料学报, 2020, 23(5): 1113-1120. |
BAO Dexiang, CAO Qingxia, ZHANG Fukui, et al. Effect of graphene on anti-aging properties of rubber modified asphalt[J]. Journal of Building Materials, 2020, 23(5): 1113-1120. | |
6 | LIU Zhen, GU Xingyu, DONG Xiyang, et al. Mechanism and performance of graphene modified asphalt: An experimental approach combined with molecular dynamic simulations[J]. Case Studies in Construction Materials, 2023, 18: e01749. |
7 | 郭贺源. 石墨烯橡胶复合改性沥青及沥青混合料性能研究[D]. 南宁: 广西大学, 2019. |
GUO Heyuan. Study on performance of graphene rubber composite modified asphalt and asphalt mixture[D]. Nanning: Guangxi University, 2019. | |
8 | 成志强, 张晓燕, 孔繁盛, 等. 利用表面能理论及拉脱试验分析沥青膜的剥离行为[J]. 材料导报, 2020, 34(S2): 1288-1294. |
CHENG Zhiqiang, ZHANG Xiaoyan, KONG Fansheng, et al. Investigation on stripping behavior of asphalt film using surface energy theory and pull-off test[J]. Materials Reports, 2020, 34(S2): 1288-1294. | |
9 | 马峰, 富志鹏, 傅珍, 等. 基于光电比色法的天然沥青改性沥青与集料黏附性研究[J]. 郑州大学学报(工学版), 2015, 36(3): 77-81. |
MA Feng, FU Zhipeng, FU Zhen, et al. Adhesion between asphalt modified with natural asphalt and aggregate based on photoelectric colorimetric method[J]. Journal of Zhengzhou University (Engineering Science), 2015, 36(3): 77-81. | |
10 | 李昇, 张岩, 焦凯. 基于表面能理论的改性沥青与集料黏附性研究[J]. 水资源与水工程学报, 2022, 33(2): 158-164. |
LI Sheng, ZHANG Yan, JIAO Kai. Research on adhesion between modified asphalt and aggregate based on surface energy theory[J]. Journal of Water Resources and Water Engineering, 2022, 33(2): 158-164. | |
11 | 李萍, 何腾, 念腾飞, 等. 冻融循环下沥青-集料的黏附性试验与评价方法[J]. 江苏大学学报(自然科学版), 2020, 41(1): 103-110. |
LI Ping, HE Teng, NIAN Tengfei, et al. Experiment and evaluation methods on adhesion between asphalt and aggregate under freeze-thaw cycles[J]. Journal of Jiangsu University (Natural Science Edition), 2020, 41(1): 103-110. | |
12 | YU Caihua, HU Kui, YANG Qilin, et al. Analysis of the storage stability property of carbon nanotube/recycled polyethylene-modified asphalt using molecular dynamics simulations[J]. Polymers, 2021, 13(10): 1658. |
13 | PENG Chao, YANG Hanneng, YOU Zhanping, et al. Investigation of adhesion performance of wax based warm mix asphalt with molecular dynamics simulation[J]. Materials, 2022, 15(17): 5930. |
14 | ZHAO Song, ZHANG Haitao, FENG Yuping, et al. Effect of diffusion on interfacial properties of polyurethane-modified asphalt-aggregate using molecular dynamic simulation[J]. Reviews on Advanced Materials Science, 2022, 61(1): 778-794. |
15 | ZENG Qing, LIU Yaru, LIU Qicheng, et al. Preparation and modification mechanism analysis of graphene oxide modified asphalts[J]. Construction and Building Materials, 2020, 238: 117706. |
16 | ZENG Qing, LIU Qicheng, LIU Peng, et al. Study on modification mechanism of nano-ZnO/polymerised styrene butadiene composite-modified asphalt using density functional theory[J]. Road Materials and Pavement Design, 2020, 21(5): 1426-1438. |
17 | 潘伶, 张晋铭, 吕志田, 等. 基于分子动力学两集料间沥青的拉伸黏附机理[J]. 建筑材料学报, 2021, 24(5): 1054-1059, 1122. |
PAN Ling, ZHANG Jinming, Zhitian LYU, et al. Tensile adhesion mechanism of asphalt confined in two aggregates based on molecular dynamics[J]. Journal of Building Materials, 2021, 24(5): 1054-1059, 1122. | |
18 | ZHANG Hongliang, HUANG Man, HONG Jun, et al. Molecular dynamics study on improvement effect of bis(2-hydroxyethyl) terephthalate on adhesive properties of asphalt-aggregate interface[J]. Fuel, 2021, 285: 119175. |
19 | GONG Yan, XU Jian, YAN Erhu. Intrinsic temperature and moisture sensitive adhesion characters of asphalt-aggregate interface based on molecular dynamics simulations[J]. Construction and Building Materials, 2021, 292: 123462. |
20 | LONG Zhengwu, YOU Lingyun, TANG Xianqiong, et al. Analysis of interfacial adhesion properties of nano-silica modified asphalt mixtures using molecular dynamics simulation[J]. Construction and Building Materials, 2020, 255: 119354. |
21 | XU Guangji, WANG Hao. Molecular dynamics study of interfacial mechanical behavior between asphalt binder and mineral aggregate[J]. Construction and Building Materials, 2016, 121: 246-254. |
22 | 张伟, 张钊, 曹晖, 等. 表面预处理PVA纤维改性沥青的高温流变特性[J]. 深圳大学学报(理工版), 2022, 39(4): 409-416. |
ZHANG Wei, ZHANG Zhao, CAO Hui, et al. High temperature rheological properties of surface pretreated PVA fiber modified asphalt[J]. Journal of Shenzhen University (Science and Engineering), 2022, 39(4): 409-416. | |
23 | 陈燕娟, 高建明, 陈华鑫. 基于表面能理论的沥青-集料体系的粘附特性研究[J]. 东南大学学报(自然科学版), 2014, 44(1): 183-187. |
CHEN Yanjuan, GAO Jianming, CHEN Huaxin. Research on adhesion in asphalt-aggregate systems based on surface energy theory[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(1): 183-187. | |
24 | NIE Fenghua, JIAN Wei, LAU Denvid. An atomistic study on the thermomechanical properties of graphene and functionalized graphene sheets modified asphalt[J]. Carbon, 2021, 182: 615-627. |
25 | LI Derek D, GREENFIELD Michael L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356. |
26 | ZHANG Liqun, GREENFIELD Michael L. Analyzing properties of model asphalts using molecular simulation[J]. Energy & Fuels, 2007, 21(3): 1712-1716. |
27 | HU Kui, YU Caihua, CHEN Yujing, et al. Multiscale mechanisms of asphalt performance enhancement by crumbed waste tire rubber: Insight from molecular dynamics simulation[J]. Journal of Molecular Modeling, 2021, 27(6): 170. |
28 | ZHOU Xinxing, ZHANG Xiao, XU Song, et al. Evaluation of thermo-mechanical properties of graphene/carbon-nanotubes modified asphalt with molecular simulation[J]. Molecular Simulation, 2017, 43(4): 312-319. |
29 | 贾晓凡. 胶粉/SBS复合改性沥青及混合料性能研究[D]. 兰州: 兰州交通大学, 2020. |
JIA Xiaofan. Study on performance of rubber powder/SBS composite modified asphalt and mixture[D]. Lanzhou: Lanzhou Jiaotong University, 2020. | |
30 | 何亮, 李冠男, 郑雨丰, 等. 沥青体系的分子动力学研究进展及展望[J]. 材料导报, 2020, 34(19): 19083-19093. |
HE Liang, LI Guannan, ZHENG Yufeng, et al. Research progress and prospect of molecular dynamics of asphalt systems[J]. Materials Reports, 2020, 34(19): 19083-19093. | |
31 | CHU Longjia, LUO Lei, Tien Fang FWA. Effects of aggregate mineral surface anisotropy on asphalt-aggregate interfacial bonding using molecular dynamics (MD) simulation[J]. Construction and Building Materials, 2019, 225: 1-12. |
32 | GAO Yangming, ZHANG Yuqing, YANG Yang, et al. Molecular dynamics investigation of interfacial adhesion between oxidised bitumen and mineral surfaces[J]. Applied Surface Science, 2019, 479: 449-462. |
33 | GAO Yangming, ZHANG Yuqing, GU Fan, et al. Impact of minerals and water on bitumen-mineral adhesion and debonding behaviours using molecular dynamics simulations[J]. Construction and Building Materials, 2018, 171: 214-222. |
34 | TAN Yourong, ZHANG Haiyan, CAO Dongwei, et al. Study on cohesion and adhesion of high-viscosity modified asphalt[J]. International Journal of Transportation Science and Technology, 2019, 8(4): 394-402. |
35 | 李超. 氧化石墨烯(GO)-竹纤维复合改性沥青及OGFC沥青混合料性能研究[D]. 长沙: 中南林业科技大学, 2021. |
LI Chao. Research on performance of graphene oxide (GO)-bamboo fiber composite modified asphalt and OGFC asphalt mixture[D]. Changsha: Central South University of Forestry & Technology, 2021. | |
36 | 王威娜, 徐青杰, 周圣雄, 等. 沥青-集料黏附作用评价方法综述[J]. 材料导报, 2019, 33(13): 2197-2205. |
WANG Weina, XU Qingjie, ZHOU Shengxiong, et al. A review on evaluation methods of asphalt-aggregate adhesion[J]. Materials Reports, 2019, 33(13): 2197-2205. | |
37 | 赵艳, 李波, 曹贵, 等. 基于表面能的氧化石墨烯改性沥青黏附性[J]. 建筑材料学报, 2021, 24(6): 1341-1347. |
ZHAO Yan, LI Bo, CAO Gui, et al. Adhesion characteristics of graphene oxide modified asphalt based on surface free energy[J]. Journal of Building Materials, 2021, 24(6): 1341-1347. | |
38 | SUN Guoqing, NIU Zhenxing, ZHANG Jiupeng, et al. Impacts of asphalt and mineral types on interfacial behaviors: A molecular dynamics study[J]. Case Studies in Construction Materials, 2022, 17: e01581. |
39 | 徐文毅. 沥青-矿粉相互作用行为多尺度表征及界面粘附机理的分子动力学模拟[D]. 金华: 浙江师范大学, 2021. |
XU Wenyi. Multi-scale characterization of asphalt-filler interaction behavior and molecular dynamic simulation of interfacial adhesion mechanism[D]. Jinhua: Zhejiang Normal University, 2021. |
[1] | DING Wei, DU Wei, GUO Tiebin, GUAN Xiaozhuo, WANG Tiezheng, GAO Jiantong, ZHANG Nan, LI Da, ZHANG Lanhe. Preparation and anti-corrosion research of graphene oxide modified by L-glutamic acid composite epoxy resin coating [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 424-435. |
[2] | MU Ming, ZHAO Weiwei, CHEN Guangmeng, LIU Xiaoqing. Research progress of strain sensor based on laser-induced graphene [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4970-4979. |
[3] | XIE Juan, HE Wen, ZHAO Xucheng, LI Shuaihui, LU Zhenzhen, DING Zheyu. Research progress on the application of molecular dynamics simulation in asphalt systems [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4432-4449. |
[4] | PAN Tongtong, CUI Xiangmei. Preparation of methylglucamine-functionalized rGO/MWCNTs-OH composite aerogels and its adsorption of boron [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3386-3397. |
[5] | LAN Ruisong, LIU Lihua, ZHANG Qian, CHEN Boyan, HONG Junming. Performance and biotoxicity evaluation of sulfur-doped graphene as a cathode for MFC [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3430-3439. |
[6] | HUANG Zibo, ZHOU Wenjing, WEI Jinjia. Product evolution and reaction mechanism of low-rank coal pyrolysis based on ReaxFF MD simulation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2409-2419. |
[7] | YAN Yu, XIA Xin, LUO Junpeng, LIU Dapeng, QIAN Feiyue. Effects of peroxide types on the removal of anti-inflammatory medicines in water with rGO/CNTs catalytic membranes [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1436-1445. |
[8] | YAN Shoucheng, ZHANG Huihua, XU Qianqian, WANG Yukun. Application of graphene composite supported catalyst in the removal of NO from diesel exhaust [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1456-1465. |
[9] | CHEN Linlin, YU Fei, Ma JIE. Preparation of wood-based cellulose/graphene separation membrane and pollutant separation performance [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1584-1592. |
[10] | WANG Yansen, HOU Dandan, LI Changjin, QI Liya, WANG Chunyao, GUO Min, WANG Ying. Preparation and properties of graphene oxide/polyacrylic acid conductive and adhesive hydrogels [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1022-1032. |
[11] | SHI Ke, MA Feng, SONG Ruimeng, FU Zhen. Diffusion behavior of waste soybean oil rejuvenated bitumen based on molecular simulation [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6794-6803. |
[12] | HAUNG Wendi, ZHOU Guobing, CAO Baoxin. Molecular dynamics simulation of interface thermal resistance of graphene/sodium acetate trihydrate composite phase change material [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6820-6827. |
[13] | LI Shuangxi, DANG Jie, WANG Ziqi, GAO Tong, ZHAO Tan, BI Enzhe. Tribological characteristics of silane coupling agent-modified graphene oxide /magnesium hydroxide composites under high temperature and high load working conditions [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6862-6872. |
[14] | GUO Qilin, GUO Shi, ZHANG Yingbo, PAN Yiyong, CHEN Zhikang, CHEN Shuang, LIU Hui’e, SHEN Qi, GUO Rongrong. Preparation of carbon nanotube-graphene composite aerogel and evaluation of photothermal assisted oil absorption performance [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6317-6326. |
[15] | LI Kaipeng, LU Xiaomin, FU Jiao, PEI Feng, CHEN Xinzhi, LIAN Peichao. Preparation of N-doped reduced graphene oxide /black phosphorus quantum dot composite by low temperature photocatalysis and its performance as anode materials for lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6336-6343. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 3
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 14
|
|
|||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |