Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 982-990.DOI: 10.16085/j.issn.1000-6613.2024-0216
• Materials science and technology • Previous Articles Next Articles
YANG Lu(
), WEI Haiqin, YUAN Haobo, GAO Zhihua, HUANG Wei, WANG Xiaodong(
)
Received:2024-01-29
Revised:2024-03-19
Online:2025-03-10
Published:2025-02-25
Contact:
WANG Xiaodong
杨璐(
), 魏海琴, 袁浩博, 高志华, 黄伟, 王晓东(
)
通讯作者:
王晓东
作者简介:杨璐(1997 —),女,硕士研究生,研究方向为液体分离膜。E-mail:934665400@qq.com。
基金资助:CLC Number:
YANG Lu, WEI Haiqin, YUAN Haobo, GAO Zhihua, HUANG Wei, WANG Xiaodong. Water content in the synthesis solution regulates the dehydration performance of Ge-ZSM-5 membranes for ethylene glycol solution[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 982-990.
杨璐, 魏海琴, 袁浩博, 高志华, 黄伟, 王晓东. 合成液中水含量调控Ge-ZSM-5膜的乙二醇脱水性能[J]. 化工进展, 2025, 44(2): 982-990.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0216
| 合成液H2O/TPAOH | 膜中Si/Al | 膜中Si/Ge |
|---|---|---|
| 438 | 185.85 | 101.55 |
| 481 | 83.12 | 129.03 |
| 485 | 74.83 | 144.14 |
| 合成液H2O/TPAOH | 膜中Si/Al | 膜中Si/Ge |
|---|---|---|
| 438 | 185.85 | 101.55 |
| 481 | 83.12 | 129.03 |
| 485 | 74.83 | 144.14 |
| 合成液H2O/TPAOH | 膜中Si/Al | 膜中Si/Ge |
|---|---|---|
| 438 | 107.13 | 189.53 |
| 481 | 74.38 | 196.36 |
| 485 | 65.41 | 245.28 |
| 合成液H2O/TPAOH | 膜中Si/Al | 膜中Si/Ge |
|---|---|---|
| 438 | 107.13 | 189.53 |
| 481 | 74.38 | 196.36 |
| 485 | 65.41 | 245.28 |
| 合成液H2O/TPAOH | 操作温度/℃ | 进料水 质量分数/% | 渗透通量 /g·m-2·h-1 | 分离因子 |
|---|---|---|---|---|
| 438① | 30 | 15 | 237.7 | 45.9 |
| 481① | 30 | 15 | 75.7 | 60.7 |
| 485① | 30 | 15 | 68.4 | 73.5 |
| 438② | 30 | 15 | 248.6 | 51.0 |
| 481② | 30 | 15 | 86.0 | 67.4 |
| 485② | 30 | 15 | 81.5 | 88.8 |
| 合成液H2O/TPAOH | 操作温度/℃ | 进料水 质量分数/% | 渗透通量 /g·m-2·h-1 | 分离因子 |
|---|---|---|---|---|
| 438① | 30 | 15 | 237.7 | 45.9 |
| 481① | 30 | 15 | 75.7 | 60.7 |
| 485① | 30 | 15 | 68.4 | 73.5 |
| 438② | 30 | 15 | 248.6 | 51.0 |
| 481② | 30 | 15 | 86.0 | 67.4 |
| 485② | 30 | 15 | 81.5 | 88.8 |
| 膜种类 | 温度/℃ | 进料水质量分数/% | 渗透通量/g·m-2·h-1 | 分离因子 | 参考文献 |
|---|---|---|---|---|---|
| PVA | 30 | 10 | 26 | 802 | [ |
| CS/PVA/GO | 50 | 5 | 630 | 204.7 | [ |
| HBPE/PVA | 25 | 10 | 43.8 | 312 | [ |
| HAS/PPO | 50 | 10 | 20.6 | 11240 | [ |
| PEI/GO | 35 | 1 | 92 | 375 | [ |
| AO-PIM-1 | 60 | 20 | 589.7 | 477.9 | [ |
| GO/PPO | 22 | 10 | 78 | 4491 | [ |
| NaA/PVA | 70 | 20 | 960 | 1520 | [ |
| NaA | 80 | 10 | 7160 | 10996 | [ |
| ZSM-5 | 80 | 10 | 105.6 | 121.8 | [ |
| Ge-ZSM-5 | 30 | 1 | 38.8 | 1138.5 | 本工作 |
| Ge-ZSM-5 | 30 | 5 | 63.7 | 294.5 | 本工作 |
| Ge-ZSM-5 | 30 | 15 | 81.5 | 88.8 | 本工作 |
| 膜种类 | 温度/℃ | 进料水质量分数/% | 渗透通量/g·m-2·h-1 | 分离因子 | 参考文献 |
|---|---|---|---|---|---|
| PVA | 30 | 10 | 26 | 802 | [ |
| CS/PVA/GO | 50 | 5 | 630 | 204.7 | [ |
| HBPE/PVA | 25 | 10 | 43.8 | 312 | [ |
| HAS/PPO | 50 | 10 | 20.6 | 11240 | [ |
| PEI/GO | 35 | 1 | 92 | 375 | [ |
| AO-PIM-1 | 60 | 20 | 589.7 | 477.9 | [ |
| GO/PPO | 22 | 10 | 78 | 4491 | [ |
| NaA/PVA | 70 | 20 | 960 | 1520 | [ |
| NaA | 80 | 10 | 7160 | 10996 | [ |
| ZSM-5 | 80 | 10 | 105.6 | 121.8 | [ |
| Ge-ZSM-5 | 30 | 1 | 38.8 | 1138.5 | 本工作 |
| Ge-ZSM-5 | 30 | 5 | 63.7 | 294.5 | 本工作 |
| Ge-ZSM-5 | 30 | 15 | 81.5 | 88.8 | 本工作 |
| 1 | KANDASAMY Shalini, SAMUDRALA Shanthi Priya, BHATTACHARYA Sankar. The route towards sustainable production of ethylene glycol from a renewable resource, biodiesel waste: A review[J]. Catalysis Science & Technology, 2019, 9(3): 567-577. |
| 2 | PANDA Smaranika, FUNG Vincent Yuen Kin, ZHOU Jie Fu J, et al. Improving ethylene glycol utilization in Escherichia coli fermentation[J]. Biochemical Engineering Journal, 2021, 168: 107957. |
| 3 | ENJAMURI Nagasuresh, DARBHA Srinivas. Advances in catalytic conversion of lignocellulosic biomass to ethylene glycol[J]. Catalysis Reviews, 2022: 4,66(4):1137-1207. |
| 4 | ZHANG Weixin, YING Yunpan, MA Jing, et al. Mixed matrix membranes incorporated with polydopamine-coated metal-organic framework for dehydration of ethylene glycol by pervaporation[J]. Journal of Membrane Science, 2017, 527: 8-17. |
| 5 | HALAKOO Elnaz, FENG Xianshe. Self-assembled membranes from polyethylenimine and graphene oxide for pervaporation dehydration of ethylene glycol[J]. Journal of Membrane Science, 2020, 616: 118583. |
| 6 | ROSTOVTSEVA Valeriia, FAYKOV Ilya, PULYALINA Alexandra. A review of recent developments of pervaporation membranes for ethylene glycol purification[J]. Membranes, 2022, 12(3): 312. |
| 7 | 王杰, 陈明, 李梅生, 等. 聚乙烯醇/聚多巴胺-氮化碳渗透汽化复合膜的制备[J]. 膜科学与技术, 2018, 38(2): 37-44. |
| WANG Jie, CHEN Ming, LI Meisheng, et al. Preparation of poly(vinyl alcohol)/polydopamine-graphitic carbon nitride nanocomposite membranes for pervaporation dehydration[J]. Membrane Science and Technology, 2018, 38(2): 37-44. | |
| 8 | 徐南平, 高从堦, 金万勤. 中国膜科学技术的创新进展[J]. 中国工程科学, 2014, 16(12): 4-9. |
| XU Nanping, GAO Congjie, JIN Wanqin. Innovations of membrane science and technology in China[J]. Engineering Sciences, 2014, 16(12): 4-9. | |
| 9 | HYDER M N, CHEN P. Pervaporation dehydration of ethylene glycol with chitosan-poly(vinyl alcohol) blend membranes: Effect of CS-PVA blending ratios[J]. Journal of Membrane Science, 2009, 340(1/2): 171-180. |
| 10 | Yit Thai ONG, TAN Soon Huat. Synthesis of the novel symmetric buckypaper supported ionic liquid membrane for the dehydration of ethylene glycol by pervaporation[J]. Separation and Purification Technology, 2015, 143: 135-145. |
| 11 | BURSHE M C, SAWANT S B, JOSHI J B, et al. Dehydration of ethylene glycol by pervaporation using hydrophilic IPNs of PVA, PAA and PAAM membranes[J]. Separation and Purification Technology, 1998, 13(1): 47-56. |
| 12 | SHAHVERDI Mahnaz, MOHAMMADI Toraj, Afshin PAK. Separation of ethylene glycol-water mixtures with composite poly(vinyl alcohol)-polypropylene membranes[J]. Journal of Applied Polymer Science, 2011, 119(3): 1704-1710. |
| 13 | GUO Ruili, FANG Xin, WU Hong, et al. Preparation and pervaporation performance of surface crosslinked PVA/PES composite membrane[J]. Journal of Membrane Science, 2008, 322(1): 32-38. |
| 14 | SUN De, YANG Ping, SUN Hualong, et al. Preparation and characterization of cross-linked poly (vinyl alcohol)/hyperbranched polyester membrane for the pervaporation dehydration of ethylene glycol solution[J]. European Polymer Journal, 2015, 62: 155-166. |
| 15 | ROSTOVTSEVA Valeriia, PULYALINA Alexandra, RUDAKOVA Daria, et al. Strongly selective polymer membranes modified with heteroarm stars for the ethylene glycol dehydration by pervaporation[J]. Membranes, 2020, 10(5): 86. |
| 16 | DMITRENKO Mariia, CHEPELEVA Anastasia, LIAMIN Vladislav, et al. Novel mixed matrix membranes based on polyphenylene oxide modified with graphene oxide for enhanced pervaporation dehydration of ethylene glycol[J]. Polymers, 2022, 14(4): 691. |
| 17 | LI Zhelun, BAIG Absar, SHAHIDI Kazem, et al. Chitosan/poly(vinyl alcohol)/graphene oxide mixed matrix membrane for the pervaporation dehydration of ethylene glycol[J]. Journal of Polymer Research, 2023, 30(6): 198. |
| 18 | SABZEVARI Omid, MARJANI Azam, DARIPOUR Amirmohammad. Polyamide/nano mixed matrix membranes for pervaporation dehydration ethylene glycols[J]. Oriental Journal of Chemistry, 2015, 31(2): 1091-1098. |
| 19 | MARJANI Azam. Separation of water from ethylene glycol using polyvinyl alcohol-zeolite composite membrane[J]. Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42(3): 1209-1214. |
| 20 | SHAHVERDI Mahnaz, BAHERI Bahareh, REZAKAZEMI Mashallah, et al. Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes[J]. Polymer Engineering & Science, 2013, 53(7): 1487-1493. |
| 21 | BAHERI Bahareh, SHAHVERDI Mahnaz, REZAKAZEMI Mashallah, et al. Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation[J]. Chemical Engineering Communications, 2015, 202(3): 316-321. |
| 22 | YU Congli, ZHONG Chao, LIU Yanmei, et al. Pervaporation dehydration of ethylene glycol by NaA zeolite membranes[J]. Chemical Engineering Research and Design, 2012, 90(9): 1372-1380. |
| 23 | JAFARI Mostafa, NOURI Amir, MOUSAVI Seyed Foad, et al. Optimization of synthesis conditions for preparation of ceramic (A-type zeolite) membranes in dehydration of ethylene glycol[J]. Ceramics International, 2013, 39(6): 6971-6979. |
| 24 | JAFARI Mostafa, BAYAT Arash, MOHAMMADI Toraj, et al. Dehydration of ethylene glycol by pervaporation using gamma alumina/NaA zeolite composite membrane[J]. Chemical Engineering Research and Design, 2013, 91(12): 2412-2419. |
| 25 | 杨赫. 介孔含钨材料催化纤维素制备乙二醇及产物的脱水研究[D]. 广州: 华南理工大学, 2019. |
| YANG He. Study on the catalytic conversion of cellulose into ethylene glycol by mesoporous tungsten-containing materials and dehydration of the product[D]. Guangzhou: South China University of Technology, 2019. | |
| 26 | BOWEN Travis C, NOBLE Richard D, FALCONER John L. Fundamentals and applications of pervaporation through zeolite membranes[J]. Journal of Membrane Science, 2004, 245(1/2): 1-33. |
| 27 | 李敬, 周佳欣, 尤颖, 等. 用于乙醇脱水的亲水性渗透汽化膜材料研究进展[J]. 化工新型材料, 2020, 48(9): 7-11, 15. |
| LI Jing, ZHOU Jiaxin, YOU Ying, et al. Research progress of hydrophilic pervaporation membrane material for ethanol dehydration[J]. New Chemical Materials, 2020, 48(9): 7-11, 15. | |
| 28 | 李良清, 李佳佳, 张进建, 等. 渗透汽化异丙醇脱水ZSM-5沸石膜的制备与表征[J]. 现代化工, 2018, 38(9): 136-141. |
| LI Liangqing, LI Jiajia, ZHANG Jinjian, et al. Preparation and characterization of ZSM-5 zeolite membrane for dehydration of isopropanol via pervaporation[J]. Modern Chemical Industry, 2018, 38(9): 136-141. | |
| 29 | 王聪, 刘秀凤, 崔瑞利, 等. 沸石分子筛膜缺陷的形成及修复[J]. 化学进展, 2008, 20(12): 1860-1867. |
| WANG Cong, LIU Xiufeng, CUI Ruili, et al. Formation and reparation of defects in zeolite membranes[J]. Progress in Chemistry, 2008, 20(12): 1860-1867. | |
| 30 | KWON Yeon Hye, KIANG Christine, BENJAMIN Emily, et al. Krypton-xenon separation properties of SAPO-34 zeolite materials and membranes[J]. AIChE Journal, 2017, 63(2): 761-769. |
| 31 | WU Jiayu, HUANG Weijie, ZHOU Junjing, et al. Highly selective and permeable SSZ-13 zeolite membranes synthesized by a facile in situ approach for CO2/CH4 separation[J]. Journal of Membrane Science, 2023, 676: 121580. |
| 32 | ZHAO Jing, ZHANG Yifu, TIAN Fuping, et al. Correction: High pH promoting the synthesis of V-Silicalite-1 with high vanadium content in the framework and its catalytic performance in selective oxidation of styrene[J]. Dalton Transactions, 2018, 47(48): 17525. |
| 33 | KHATAMIAN M, YAVARI A, AKBARZADEH A, et al. A study on the synthesis of [Fe, B]-MFI zeolites using hydrothermal method and investigation of their properties[J]. Journal of Molecular Liquids, 2017, 242: 979-986. |
| 34 | 朱美华, 夏水莲, 刘永生, 等. 二次水热合成法制备ZSM-5分子筛膜及其渗透汽化性能[J]. 化工进展, 2016, 35(9): 2885-2891. |
| ZHU Meihua, XIA Shuilian, LIU Yongsheng, et al. Secondary hydrothermal synthesis of ZSM-5 zeolite membrane and its pervaporation performance[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2885-2891. | |
| 35 | SHIRAZIAN Saeed, GHAFARNEJAD PARTO Soheila, ASHRAFIZADEH Seyed Nezameddin. Effect of water content of synthetic hydrogel on dehydration performance of nanoporous LTA zeolite membranes[J]. International Journal of Applied Ceramic Technology, 2014, 11(5): 793-803. |
| 36 | WANG Xiaodong, DENG Xuan, BAI Zhongxiang, et al. The synthesis of super-hydrophilic and acid-proof Ge-ZSM-5 membranes by simultaneous incorporation of Ge and Al into a Silicalite-1 framework[J]. Journal of Membrane Science, 2014, 468: 202-208. |
| 37 | VAN DE WATER Leon G A, VAN DER WAAL Jan C, JANSEN Jacobus C, et al. Ge-ZSM-5: The simultaneous incorporation of Ge and Al into ZSM-5 using a parallel synthesis approach[J]. The Journal of Physical Chemistry B, 2003, 107(38): 10423-10430. |
| 38 | LI Jiang, PAN Yubai, XIANG Changshu, et al. Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol-gel process[J]. Ceramics International, 2006, 32(5): 587-591. |
| 39 | KANEZASHI Masakoto, Jessica O’BRIEN, LIN Y S. Thermal stability improvement of MFI-type zeolite membranes with doped zirconia intermediate layer[J]. Microporous and Mesoporous Materials, 2007, 103(1/2/3): 302-308. |
| 40 | Banseok OH, KIM Kyunam, KWON YongSung, et al. Pervaporation dehydration of ethylene glycol/water mixture via hydrophilic polymer of intrinsic microporosity (PIM) derivatives[J]. Journal of Membrane Science, 2023, 680: 121707. |
| [1] | CHEN Xiaole, LI Na, CHEN Linyu, ZHOU Qulan. Preparation of ZIFs/PDMDES mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 407-414. |
| [2] | ZHANG Hao, LIU Shiyu, SHEN Weihua, FANG Yunjin. Dehydration of urea to cyanamide with Ca-ZSM-5 [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 365-373. |
| [3] | LI Yan, WU Qin, CHEN Kangcheng, ZHANG Yaoyuan, SHI Daxin, LI Hansheng. Modified polyimide pervaporation membranes for dehydration of organic solvent [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2915-2927. |
| [4] | ZHANG Lele, QIAN Yundong, ZHU Huatong, FENG Silong, YANG Xiuna, YU Ying, YANG Qiang, LU Hao. Study on optimization limits of dehydration and desalination pretreatment of hydrogenated coal tar [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2298-2305. |
| [5] | ZHAO Yao, ZHOU Zhihui, WU Hongdan, HU Chuanzhi, ZHANG Guochun, WU Ruipeng. Response surface analysis and optimization of membrane permeation vaporization by Silicalite-1 molecular sieve [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2586-2594. |
| [6] | CHEN Yi, GUO Yaoli, YE Haixing, LI Yuxuan, NIU Q.Jason. Application of two-dimensional nanomaterials in pervaporation desalination membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447. |
| [7] | ZHANG Guochun, ZHOU Zhihui, WU Hongdan. Isopropanol dehydration performance of a novel MXene membrane based on a α-Al2O3 carrier tube [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5381-5389. |
| [8] | XIAO Yi, WANG Bingbing, YU Xuliang, WANG Xin, CAI Hanyou. Molecular dynamics simulation on adsorption and dehydration behavior of calcium carbonate on heat exchange surface [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4077-4085. |
| [9] | HAN Guanglu, LU Kuan, LYU Jie, ZHANG Yonghui, CHEN Mohan. Carboxyl graphene composite membranes covalently crosslinked with diols and the n-butanol dehydration properties [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3801-3807. |
| [10] | ZHANG Chun, WANG Xuerui, LIU Hua, GAO Xuechao, ZHANG Yuting, GU Xuehong. Progress of zeolite membranes for reduction of carbon emission in industrial processes [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1376-1390. |
| [11] | LYU Xiaoqi, LI Hong, ZHAO Zhenyu, LI Xingang, GAO Xin, FAN Xiaolei. Microwave-assisted carbon-based catalysts for fructose dehydration to 5-hydroxymethylfurfural [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 637-647. |
| [12] | MU Shiyun, LIU Kai, LYU Xiaoqi, JIAO Yilai, LI Xingang, LI Hong, FAN Xiaolei, GAO Xin. Conversion of fructose to 5-hydroxymethylfurfural catalyzed by microwave-assisted zirconia@carbon nanotubes [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5858-5869. |
| [13] | MA Shunxuan, SONG Xiaosan, WANG Sanfan, ZHANG Xuan. Preparation and application of pervaporization membranes [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 256-264. |
| [14] | LI Saisai, ZHAN Shuo, LI Jiding, HE Jing, WANG Luying. Preparation and performance control of calcium lignosulfonate/sodium alginate pervaporation membrane [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 311-318. |
| [15] | LIU Juan, CHEN Yuhao, YE Haixing, SUN Haixiang. Application development of interfacial polymerization in the fields of pervaporation membranes [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4314-4326. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |