Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (8): 4077-4085.DOI: 10.16085/j.issn.1000-6613.2021-1943
• Chemical processes and equipment • Previous Articles Next Articles
XIAO Yi(), WANG Bingbing(), YU Xuliang, WANG Xin, CAI Hanyou
Received:
2021-09-09
Revised:
2021-10-31
Online:
2022-08-22
Published:
2022-08-25
Contact:
WANG Bingbing
通讯作者:
王兵兵
作者简介:
肖毅(1997—),男,硕士研究生,研究方向为换热表面污垢形成机理与抑制方法。E-mail:基金资助:
CLC Number:
XIAO Yi, WANG Bingbing, YU Xuliang, WANG Xin, CAI Hanyou. Molecular dynamics simulation on adsorption and dehydration behavior of calcium carbonate on heat exchange surface[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4077-4085.
肖毅, 王兵兵, 于旭亮, 王鑫, 蔡汉友. 换热壁面碳酸钙吸附与脱水行为的分子动力学[J]. 化工进展, 2022, 41(8): 4077-4085.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1943
项目 | 类型 | k/eV·?-2 | r0/? | kθ/eV·rad-2 | θ0/(°) |
---|---|---|---|---|---|
Hw—Ow | Harmonic | 45.93 | 1.012 | ||
Hw—Ow—Hw | Harmonic | 3.291 | 113.24 |
项目 | 类型 | k/eV·?-2 | r0/? | kθ/eV·rad-2 | θ0/(°) |
---|---|---|---|---|---|
Hw—Ow | Harmonic | 45.93 | 1.012 | ||
Hw—Ow—Hw | Harmonic | 3.291 | 113.24 |
项目 | 类型 | k/eV·?-2 | r0/? | ka/eV·rad-2 | kbb/eV·?-2 | kba/eV·?-1·rad-1 | k2/eV·?-2 | k4/eV·?-4 |
---|---|---|---|---|---|---|---|---|
C—O | Harmonic | 40.8493 | 1.3042 | |||||
O—C—O | class2 | 13.234 | 12.818 | 1.53319 | ||||
C—O/O/O | Distance | 13.647 | 360.0 |
项目 | 类型 | k/eV·?-2 | r0/? | ka/eV·rad-2 | kbb/eV·?-2 | kba/eV·?-1·rad-1 | k2/eV·?-2 | k4/eV·?-4 |
---|---|---|---|---|---|---|---|---|
C—O | Harmonic | 40.8493 | 1.3042 | |||||
O—C—O | class2 | 13.234 | 12.818 | 1.53319 | ||||
C—O/O/O | Distance | 13.647 | 360.0 |
原子 | 电荷量/e | 原子量 |
---|---|---|
Hw | 0.41 | 1.008 |
Ow | -0.82 | 16.000 |
Ca | 2 | 40.080 |
C | 1.123285 | 12.010 |
O | -1.041095 | 16.000 |
Cu | 0 | 63.550 |
原子 | 电荷量/e | 原子量 |
---|---|---|
Hw | 0.41 | 1.008 |
Ow | -0.82 | 16.000 |
Ca | 2 | 40.080 |
C | 1.123285 | 12.010 |
O | -1.041095 | 16.000 |
Cu | 0 | 63.550 |
Lennard-Jones | ε/eV | σ/? | |
---|---|---|---|
Ow—Ow(lj/cut) | 0.00674 | 3.16549 | |
Ow—Ca(lj/mdf) | 0.00095 | 3.35 | |
Ow—Cu(lj/cut) | 0.05252 | 2.72029 | |
Ca—Cu(lj/cut) | 0.09211 | 2.35409 | |
C—Cu(lj/cut) | 0.03956 | 2.98960 | |
O—Cu(lj/cut) | 0.04969 | 2.68805 | |
Cu—Cu(lj/cut) | 0.4093 | 2.3377 | |
Buckingham | A/eV | ρ/? | C/eV·?6 |
Ca—O(buck/mdf) | 3161.63 | 0.27151 | 0 |
Ca—C(buck/mdf) | 120000000 | 0.12 | 0 |
O—O(buck/mdf) | 63840.20 | 0.19891 | 27.899 |
O—Ow(buck/mdf) | 12534.46 | 0.2020 | 12.090 |
O—Hw(buck/mdf) | 396.30 | 0.2170 | 0 |
Lennard-Jones | ε/eV | σ/? | |
---|---|---|---|
Ow—Ow(lj/cut) | 0.00674 | 3.16549 | |
Ow—Ca(lj/mdf) | 0.00095 | 3.35 | |
Ow—Cu(lj/cut) | 0.05252 | 2.72029 | |
Ca—Cu(lj/cut) | 0.09211 | 2.35409 | |
C—Cu(lj/cut) | 0.03956 | 2.98960 | |
O—Cu(lj/cut) | 0.04969 | 2.68805 | |
Cu—Cu(lj/cut) | 0.4093 | 2.3377 | |
Buckingham | A/eV | ρ/? | C/eV·?6 |
Ca—O(buck/mdf) | 3161.63 | 0.27151 | 0 |
Ca—C(buck/mdf) | 120000000 | 0.12 | 0 |
O—O(buck/mdf) | 63840.20 | 0.19891 | 27.899 |
O—Ow(buck/mdf) | 12534.46 | 0.2020 | 12.090 |
O—Hw(buck/mdf) | 396.30 | 0.2170 | 0 |
1 | PÄÄKKÖNEN T M, RIIHIMÄKI M, SIMONSON C J, et al. Crystallization fouling of CaCO3-analysis of experimental thermal resistance and its uncertainty[J]. International Journal of Heat & Mass Transfer, 2012, 55(23-24): 6927-6937. |
2 | CHAUSSEMIER M, POURMOHTASHAM E, GELUS D, et al. State of art of natural inhibitors of calcium carbonate scaling[J]. Desalination, 2015, 356: 47-55. |
3 | 贺姗姗. 圆管内三角翼涡流发生器CaCO3污垢特性的数值模拟[D]. 吉林: 东北电力大学, 2018. |
HE S S. Numerical simulation of CaCO3 fouling characteristics in tube with delta wing vortex generator[D]. Jilin: Northeast Electric Power University, 2018. | |
4 | 罗志强, 杨庆峰. 旋转磁场与水量耦合对CaCO3结晶的影响[J]. 化工学报, 2018, 69(7): 3029-3037. |
LUO Z Q, YANG Q F. Effect of rotating magnetic field coupled with water volume on CaCO3 crystallization[J]. CIESC Journal, 2018, 69(7): 3029-3037. | |
5 | WANG J G, LIANG Y D. Anti-fouling effect of axial alternating electromagnetic field on calcium carbonate fouling in U-shaped circulating cooling water heat exchange tube[J]. International Journal of Heat & Mass Transfer, 2017, 115: 774-781. |
6 | 李海花, 刘振法, 高玉华, 等. 静电场对CaCO3结晶过程的影响及与绿色阻垢剂的协同阻垢性能[J]. 化工学报, 2013, 64(5): 1736-1742. |
LI H H, LIU Z F, GAO Y H, et al. Influence of electrostatic water treatment on crystallization behavior of CaCO3 and synergistic scale inhibition with a green scale inhibitor[J]. CIESC Journal, 2013, 64(5): 1736-1742. | |
7 | ALIMI F, TLILI M, AMOR M B, et al. Influence of magnetic field on calcium carbonate precipitation[J]. Desalination, 2007, 206(1/2/3): 163-168. |
8 | TIJING L D, LEE D H, KIM D W, et al. Effect of high-frequency electric fields on calcium carbonate scaling[J]. Desalination, 2011, 279(1/2/3): 47-53. |
9 | 徐志明, 常宏亮, 王兵兵, 等. 电场作用下CaCO3污垢特性的实验研究[J]. 中国电机工程学报, 2018, 38(21): 6346-6352. |
XU Z M, CHANG H L, WANG B B, et al. Experimental study on CaCO3 fouling characteristics under electric field[J]. Proceedings of the CSEE, 2018, 38(21): 6346-6352. | |
10 | SMEETS P, KANG R C, KEMPEN R, et al. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy[J]. Nature Materials, 2015, 14(4): 394-399. |
11 | GEBAUER D, CÖLFEN H. Prenucleation clusters and non-classical nucleation[J]. Nano Today, 2011, 6(6): 564-584. |
12 | GEBAUER D, VÖLKEL A, CÖLFEN H. Stable prenucleation calcium carbonate clusters[J]. Science, 2008, 322(5909): 1819-1822. |
13 | POUGET E M, BOMANS P H H, GOOS J A C M, et al. The initial stages of template-controlled CaCO3 formation revealed by Cryo-TEM[J]. Science, 2009, 323(5920): 1455-1458. |
14 | GOODWIN A L, MICHEL F M, PHILLIPS B L, et al. Nanoporous structure and medium-range order in synthetic amorphous calcium carbonate[J]. Chemistry of Materials, 2010, 22(10): 3197-3205. |
15 | RAITERI P, GALE J D. Water is the key to nonclassical nucleation of amorphous calcium carbonate[J]. Journal of the American Chemical Society, 2010, 132(49): 17623–17634. |
16 | RODRIGUEZ-BLANCO J D, SHAW S, BENNING L G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite[J]. Nanoscale, 2010, 3(1): 265-271. |
17 | NIELSEN M H, ALONI S, YOREO J J D. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways[J]. Science, 2014, 345(6201): 1158-1162. |
18 | SAHARAY M, YAZAYDIN A O, KIRKPATRICK R J. Dehydration-induced amorphous phases of calcium carbonate[J]. Journal of Physical Chemistry B, 2013, 117(12): 3328-3336. |
19 | SAHARAY M, KIRKPATRICK R J. Water dynamics in hydrated amorphous materials: a molecular dynamics study of the effects of dehydration in amorphous calcium carbonate[J]. Physical Chemistry Chemical Physics, 2017, 19(43): 29594-29600. |
20 | PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. |
21 | MA M, WANG Y H, CAO X F, et al. Temperature and supersaturation as key parameters controlling the spontaneous precipitation of calcium carbonate with distinct physicochemical properties from pure aqueous solutions[J]. Crystal Growth and Design, 2019, 19(12): 6972-6988. |
22 | WU Y J, TEPPER H L, VOTH G A. Flexible simple point-charge water model with improved liquid-state properties[J]. The Journal of Chemical Physics, 2006, 124(2): 24503-24503. |
23 | DEMICHELIS R, RAITERI P, GALE J D, et al. Stable prenucleation mineral clusters are liquid-like ionic polymers[J]. Nature Communications, 2011, 2(6): 590. |
24 | XIAO S J, EDWARDS S A, GRÄTER F. A new transferable forcefield for simulating the mechanics of CaCO3 crystals[J]. Journal of Physical Chemistry C, 2011, 115(41): 20067-20075. |
25 | SWOPE W C, ANDERSEN H C, BERENS P H, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters[J]. Journal of Chemical Physics, 1982, 76(1): 637-649. |
26 | BECKERS J V L, LOWE C P, LEEUW S W D. An iterative PPPM method for simulating coulombic systems on distributed memory parallel computers[J]. Molecular Simulation, 1998, 20(6): 369-383. |
27 | GEBAUER D, GUNAWIDJAJA P N, KO J Y P. Proto-calcite and proto-vaterite in amorphous calcium carbonates[J]. Angewandte Chemie International Edition, 2010, 49(47): 8889-8891. |
28 | SURFACEACE A F, HEDGES L O, FERNANDEZ-MARTINEZ A, et al. Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions[J]. Science, 2013, 341(6148): 885-889. |
29 | LHLI J, WONG W C, NOEL E H, et al. Dehydration and crystallization of amorphous calcium carbonate in solution and in air[J]. Nature Communications, 2014, 5(1): 3169. |
30 | ZOU Z Y, BERTINETTI L, POLITI Y, et al. Opposite particle size effect on amorphous calcium carbonate crystallization in water and during heating in air[J]. Chemistry of Materials, 2015, 27(12): 4237-4246. |
[1] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[2] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[3] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[4] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[5] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[6] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[7] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[8] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[9] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[10] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[11] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[12] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[13] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[14] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[15] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |