Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 3727-3736.DOI: 10.16085/j.issn.1000-6613.2024-0810
• Chemical processes and equipment • Previous Articles
LIU Jianhong1,2(
), LIU Dong1,2, SHANG Fumin1,2, YANG Kai1,2, ZHENG Chaofan1,2, CAO Xin1,2
Received:2024-05-15
Revised:2024-09-05
Online:2025-08-04
Published:2025-07-25
Contact:
LIU Jianhong
刘建红1,2(
), 刘栋1,2, 商福民1,2, 杨凯1,2, 郑超凡1,2, 曹欣1,2
通讯作者:
刘建红
作者简介:刘建红(1979—),女,副教授,硕士生导师,研究方向为传热与节能技术。E-mail:liujianhong@ccit.edu.cn。
基金资助:CLC Number:
LIU Jianhong, LIU Dong, SHANG Fumin, YANG Kai, ZHENG Chaofan, CAO Xin. Heat transfer performance analysis of pulsating heat pipe heat exchanger with asymmetric structure[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3727-3736.
刘建红, 刘栋, 商福民, 杨凯, 郑超凡, 曹欣. 非对称结构脉动热管换热装置传热性能[J]. 化工进展, 2025, 44(7): 3727-3736.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0810
| [1] | 林梓荣. 自激式振荡流热管热输送性能研究[D]. 广州: 华南理工大学, 2012. |
| LIN Zirong. Study on heat transport capability of self-exciting mode oscillating-flow heat pipe[D]. Guangzhou: South China University of Technology, 2012. | |
| [2] | 徐金柱, 焦波, 孙潇, 等. 单环路液氢温区脉动热管高充液率工况计算流体动力学(CFD)模拟[J]. 化工进展, 2020, 39(7): 2556-2565. |
| XU Jinzhu, JIAO Bo, SUN Xiao, et al. CFD simulation on hydrogen pulsating heat pipe with single turn and a high filling ratio[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2556-2565. | |
| [3] | 崔文宇, 蒋振, 郝婷婷, 等. 液态金属微液滴脉动热管的传热性能[J]. 化工进展, 2022, 41(1): 95-103. |
| CUI Wenyu, JIANG Zhen, HAO Tingting, et al. Heat transfer performance of oscillating heat pipe with micro-nano droplets of liquid metal[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 95-103. | |
| [4] | 张超, 徐荣吉, 陈静妍, 等. 非共沸不互溶混合工质脉动热管启动特性分析[J]. 化工进展, 2019, 38(12): 5279-5286. |
| ZHANG Chao, XU Rongji, CHEN Jingyan, et al. Analysis of start-up characteristics of pulsating heat pipe with zeotropic immiscible mixtures[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5279-5286. | |
| [5] | 屈健. 脉动热管技术研究及应用进展[J]. 化工进展, 2013, 32(1): 33-41. |
| QU Jian. Oscillating heat pipes: State of the art and applications[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 33-41. | |
| [6] | 李楠. 通道结构对脉动热管传热性能的影响研究[D]. 大连: 大连理工大学, 2015. |
| LI Nan. Effects of channel structure on heat transfer performance of pulsating heat pipes[D]. Dalian: Dalian University of Technology, 2015. | |
| [7] | 厉青峰, 王亚楠, 何鑫, 等. 脉动热管的理论研究与应用新进展[J]. 工程科学学报, 2019, 41(9): 1115-1126. |
| LI Qingfeng, WANG Yanan, HE Xin, et al. New progress in the theoretical research and application of pulsating heat pipe[J]. Chinese Journal of Engineering, 2019, 41(9): 1115-1126. | |
| [8] | 凌云志. 基于相变材料/脉动热管耦合模块的数据中心热管理研究[D]. 南京: 东南大学, 2019. |
| LING Yunzhi. Number of coupled modules based on phase change material/pulsating heat pipe according to the center for thermal management research[D]. Nanjing: Southeast University, 2019. | |
| [9] | 刘晓峰. 热管在燃料电池热管理中的应用[J]. 汽车电器, 2022(12): 10-12. |
| LIU Xiaofeng. Application of heat pipe in fuel cell thermal management[J]. Auto Electric Parts, 2022(12): 10-12. | |
| [10] | 杨文龙, 徐英东, 于鑫, 等. 关于大数据时代数据中心散热技术的研究[J]. 电子技术与软件工程, 2022(20): 125-128. |
| YANG Wenlong, XU Yingdong, YU Xin, et al. Research on data center cooling technology in the era of big data[J]. Electronic Technology & Software Engineering, 2022 (20): 125-128. | |
| [11] | BURBAN G, AYEL V, ALEXANDRE A, et al. Experimental investigation of a pulsating heat pipe for hybrid vehicle applications[J]. Applied Thermal Engineering, 2013, 50(1): 94-103. |
| [12] | NGUYEN Kim-Bao, YOON Seok-Hun, CHOI Jae Hyuk. Effect of working-fluid filling ratio and cooling-water flow rate on the performance of solar collector with closed-loop oscillating heat pipe[J]. Journal of Mechanical Science and Technology, 2012, 26(1): 251-258. |
| [13] | 商福民, 董宜放, 范是龙, 等. 下冷式脉动热管太阳能集热器传热性能实验研究[J]. 热能动力工程, 2020, 35(3): 214-219. |
| SHANG Fumin, DONG Yifang, FAN Shilong, et al. Experimental study on heat transfer performance of bottom-cooling PHP in solar collector[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(3): 214-219. | |
| [14] | HEMMATIAN Amir, KARGARSHARIFABAD Hadi, ABEDINI ESFAHLANI Ahad, et al. Improving solar still performance with heat pipe/pulsating heat pipe evacuated tube solar collectors and PCM: An experimental and environmental analysis[J]. Solar Energy, 2024, 269: 112371. |
| [15] | YANG Honghai, WANG Jun, WANG Ning, et al. Experimental study on a pulsating heat pipe heat exchanger for energy saving in air-conditioning system in summer[J]. Energy and Buildings, 2019, 197: 1-6. |
| [16] | 孟祥全. 板翅式空气-空气全热交换器传热传质数值模拟与优化[D]. 天津: 天津工业大学, 2016. |
| MENG Xiangquan. Numerical simulation and optimization of heat and mass transfer in plate-fin air-air total heat exchanger[D]. Tianjin: Tianjin Polytechnic University, 2016. | |
| [17] | 夏侯国伟, 谢明付, 孔方明, 等. 基于空调能量回收的平板热管传热性能[J]. 中南大学学报(自然科学版), 2015, 46(1): 317-323. |
| XIAHOU Guowei, XIE Mingfu, KONG Fangming, et al. Heat transfer performance of flat heat pipe based on air-conditioning energy recovery[J]. Journal of Central South University (Science and Technology), 2015, 46(1): 317-323. | |
| [18] | 夏侯国伟, 张俊杰, 龙葵, 等. 用于空调能量回收的板式脉动热管换热器[J]. 化工进展, 2018, 37(8): 2919-2926. |
| XIAHOU Guowei, ZHANG Junjie, LONG Kui, et al. A plate pulsating heat pipe heat exchanger for air-conditioning energy recovery[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 2919-2926. | |
| [19] | MAHAJAN Govinda, THOMPSON Scott M, CHO Heejin. Energy and cost savings potential of oscillating heat pipes for waste heat recovery ventilation[J]. Energy Reports, 2017, 3: 46-53. |
| [20] | QU Jian, WU Huiying, WANG Qian. Experimental investigation of silicon-based micro-pulsating heat pipe for cooling electronics[J]. Nanoscale and Microscale Thermophysical Engineering, 2012, 16(1): 37-49. |
| [21] | DANG Chao, JIA Li, LU Qianyi. Investigation on thermal design of a rack with the pulsating heat pipe for cooling CPUs[J]. Applied Thermal Engineering, 2017, 110: 390-398. |
| [22] | MITO Toshiyuki, NATSUME Kyohei, YANAGI Nagato, et al. Development of highly effective cooling technology for a superconducting magnet using cryogenic OHP[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 2023-2026. |
| [23] | 刘建红, 阎天海, 商福民, 等. 针对不同储热材料的脉动热管太阳能集热器性能分析[J]. 分布式能源, 2023, 8(6): 77-82. |
| LIU Jianhong, YAN Tianhai, SHANG Fumin, et al. Performance analysis of pulsating heat pipe solar collector with different heat storage materials[J]. Distributed Energy, 2023, 8(6): 77-82. | |
| [24] | ELBAHJAOUI Radouane, QARNIA Hamid EL. Melting of nanoparticle-enhanced phase change material in a shell-and-tube latent heat storage unit heated by laminar pulsating fluid flow[J]. Computational Thermal Sciences, 2017, 9(4): 311-334. |
| [25] | Niti KAMMUANG-LUE, PATANATHABUTR Chinphat, SAKULCHANGSATJATAI Phrut, et al. Thermal characteristics of rotating closed-loop pulsating heat pipe designed for rotating-type energy storage devices[J]. Energy Reports, 2022, 8: 302-308. |
| [26] | SARAFRAZ M M, HORMOZI F. Experimental study on the thermal performance and efficiency of a copper made thermosyphon heat pipe charged with alumina-glycol based nanofluids[J]. Powder Technology, 2014, 266: 378-387. |
| [27] | YOUSEFI T, MOUSAVI S A, FARAHBAKHSH B, et al. Experimental investigation on the performance of CPU coolers: Effect of heat pipe inclination angle and the use of nanofluids[J]. Microelectronics Reliability, 2013, 53(12): 1954-1961. |
| [28] | 何江, 苗建印, 张红星, 等. 航天器深低温热管技术研究现状及发展趋势[J]. 真空与低温, 2018, 24(1): 1-8. |
| HE Jiang, MIAO Jianyin, ZHANG Hongxing, et al. Current status and development trend of cryogenic heat pipe technologies in spacecraft[J]. Vacuum and Cryogenics, 2018, 24(1): 1-8. | |
| [29] | ZHAO Xiaohuan, SU Limin, JIANG Jiang, et al. A review of working fluids and flow state effects on thermal performance of micro-channel oscillating heat pipe for aerospace heat dissipation[J]. Aerospace, 2023, 10(2): 179. |
| [30] | 陈阳阳, 裴圣旺, 陈晓光, 等. 矩形和圆形槽道脉动热管传热性能的实验研究[J]. 节能技术, 2019, 37(4): 291-295. |
| CHEN Yangyang, PEI Shengwang, CHEN Xiaoguang, et al. Experimental investigation on heat transfer performance of pulsating heat pipes with rectangular and circular channels[J]. Energy Conservation Technology, 2019, 37(4): 291-295. | |
| [31] | 范鹏杰, 吴学群, 卢建, 等. 充液率对风冷板式脉动热管传热性能影响的实验研究[J]. 舰船电子对抗, 2022, 45(6): 100-104. |
| FAN Pengjie, WU Xuequn, LU Jian, et al. Experimental study on the effect of liquid filling rate on heat transfer performance of air-cooled plate pulsating heat pipe[J]. Shipboard Electronic Countermeasure, 2022, 45(6): 100-104. | |
| [32] | 胡艳鑫, 黄凯鑫, 陈思旭, 等. 自湿润流体的流动与传热特性研究进展[J]. 化工进展, 2017, 36(12): 4329-4342. |
| HU Yanxin, HUANG Kaixin, CHEN Sixu, et al. Research progress of flow and heat transfer characteristics with self-rewetting fluid[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4329-4342. | |
| [33] | LIU Shi, LI Jingtao, DONG Xiangyuan, et al. Experimental study of flow patterns and improved configurations for pulsating heat pipes[J]. Journal of Thermal Science, 2007, 16(1): 56-62. |
| [34] | 张东, 徐宝睿, 王森, 等. 非对称微通道平板脉动热管的变工况实验研究[J]. 华南理工大学学报(自然科学版), 2023, 51(8): 51-61. |
| ZHANG Dong, XU Baorui, WANG Sen, et al. Experimental study of non-symmetry micro channel flat plate pulsating heat pipe under variable conditions[J]. Journal of South China University of Technology (Natural Science Edition), 2023, 51(8): 51-61. | |
| [35] | PATEL Est Dev, KUMAR Subrata. Thermal performance of a single loop pulsating heat pipe with asymmetric adiabatic channel[J]. Applied Thermal Engineering, 2023, 219: 119514. |
| [36] | PERNA Roberta, ABELA Mauro, MAMELI Mauro, et al. Flow characterization of a pulsating heat pipe through the wavelet analysis of pressure signals[J]. Applied Thermal Engineering, 2020, 171: 115128. |
| [1] | WEI Fangxi, LIU Qiannan, WU Yapin, WU Jingli, SONG Wenqing, TANG Yizhen, JIANG Bo. Asymmetric cathodic electrochemical water softening with zero electrode space: performance optimization and mechanism [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3642-3650. |
| [2] | XIE Jingwen, MENG Yifang, YE Wenjie, WANG Hualei, WEI Dongzhi. Semi-rational design to enhance short-chain alcohol dehydrogenases in the synthesis of (S)-1-(4-fluorophenyl)ethanol [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2515-2523. |
| [3] | CAI Ruiyun, JIAO Rui, SUN Hanxue, LI An. Design, preparation and application of asymmetrically wettable Janus organic porous membrane [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2057-2067. |
| [4] | XIAO Yuan, CHEN Yi, LIU Siqi, CUI Guomin. Mass-heat analogy and global optimization of mass exchange network based on generalized heat exchanger network [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 121-134. |
| [5] | SU Yao, CHEN Zhanxiu, YANG Li, XING Hewei, HU Hecang, LI Yuanhua. Effect of heat source temperature on flow heat transfer in asymmetric nanochannels [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 144-153. |
| [6] | CUI Yi, LI Mengyuan, YANG Lu, LI Haidong, ZHANG Qiqi, CHANG Chenglin, WANG Yufei. New method for automatic design of intensified shell and tube heat exchanger with twisted-tape insert [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4824-4832. |
| [7] | ZHANG Xiaotian, LIU Siqi, CUI Guomin, HUANG Xiaohuang, DUAN Huanhuan, WANG Jinyang. Heat exchanger network synthesis based on directional coordination strategy to improve heat exchange unit optimization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4342-4353. |
| [8] | SUN Chao, AI Shiqin, LIU Yuechan. Numerical simulation plate side flow heat transfer new plate-shell heat exchanger with considering physical property changes and shell heat transfer [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1676-1689. |
| [9] | CHEN Hongfei, YANG Fuxin, TAN Houzhang, CAO Jingyu, WU Shengyuan. Heat transfer performance simulation and optimization of deep borehole heat exchanger array [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1241-1251. |
| [10] | YU Yanfang, DING Pengcheng, MENG Huibo, SHI Bowen, YAO Yunjuan. Heat transfer enhancement of non-Newtonian fluid in the blade-type static mixer [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1145-1156. |
| [11] | CHEN Zihao, YANG Honghai, KONG Weixue, HE Weiqi, LIU Yuhao, YIN Yong, WANG Jun. Effect of CTAB on heat transfer and the optimal concentration in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6662-6668. |
| [12] | HU Zhuohuan, DING Xiaoyu, XU Jiayin. Effect of Tesla-valve-structure wicks on the start-up performance of loop heat pipes [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6031-6038. |
| [13] | HUI Bo, HOU Hongyi, ZHANG Tao, CHE Shengwen. Drying characteristics of cylindrical annular pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 33-40. |
| [14] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
| [15] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |