Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (12): 6662-6668.DOI: 10.16085/j.issn.1000-6613.2023-2171
• Chemical processes and equipment • Previous Articles
CHEN Zihao(
), YANG Honghai(
), KONG Weixue, HE Weiqi, LIU Yuhao, YIN Yong, WANG Jun
Received:2023-12-11
Revised:2024-05-16
Online:2025-01-11
Published:2024-12-15
Contact:
YANG Honghai
陈子豪(
), 杨洪海(
), 孔维雪, 何伟琪, 刘玉浩, 尹勇, 王军
通讯作者:
杨洪海
作者简介:陈子豪(1999—),男,硕士研究生,研究方向为脉动热管强化散热。E-mail:1241844472@qq.com。
基金资助:CLC Number:
CHEN Zihao, YANG Honghai, KONG Weixue, HE Weiqi, LIU Yuhao, YIN Yong, WANG Jun. Effect of CTAB on heat transfer and the optimal concentration in pulsating heat pipes[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6662-6668.
陈子豪, 杨洪海, 孔维雪, 何伟琪, 刘玉浩, 尹勇, 王军. CTAB强化脉动热管传热及最优浓度的影响机理[J]. 化工进展, 2024, 43(12): 6662-6668.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2171
| 文章 | 工质;质量分数/% | 充液率/% | 加热功率/W | 冷却方式 | 蒸发段、绝热段、冷凝段/mm | 弯头 |
|---|---|---|---|---|---|---|
| Xing等[ | CTAB/水;0.025/0.075/0.125/0.175/0.25 | 50 | 20~ 100 | 水冷 | 100、100、100 | 5 |
| Gandomkar等[ | CTAB/水;0.01/0.025/0.05/0.1 | 50 | 5~25 | 水冷 | 100、200、150 | 1 |
| Bastakoti等[ | CTAC/水;0.03 CTAC/水;0.005/0.01/0.1/0.2 | 35~60 | 15~80 | 风冷 | 60、40、80 | 4 |
| 本文 | CTAB/水;0.018/0.036/0.072/0.144/0.216/0.288 | 50 | 10~105 | 风冷 | 75、20、100 | 3 |
| 文章 | 工质;质量分数/% | 充液率/% | 加热功率/W | 冷却方式 | 蒸发段、绝热段、冷凝段/mm | 弯头 |
|---|---|---|---|---|---|---|
| Xing等[ | CTAB/水;0.025/0.075/0.125/0.175/0.25 | 50 | 20~ 100 | 水冷 | 100、100、100 | 5 |
| Gandomkar等[ | CTAB/水;0.01/0.025/0.05/0.1 | 50 | 5~25 | 水冷 | 100、200、150 | 1 |
| Bastakoti等[ | CTAC/水;0.03 CTAC/水;0.005/0.01/0.1/0.2 | 35~60 | 15~80 | 风冷 | 60、40、80 | 4 |
| 本文 | CTAB/水;0.018/0.036/0.072/0.144/0.216/0.288 | 50 | 10~105 | 风冷 | 75、20、100 | 3 |
| 1 | ALHUYI NAZARI Mohammad, AHMADI Mohammad H, GHASEMPOUR Roghayeh, et al. How to improve the thermal performance of pulsating heat pipes: A review on working fluid[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 630-638. |
| 2 | 赵佳腾, 吴晨辉, 戴宇成, 等. 脉动热管强化传热及其应用研究进展[J]. 化工学报, 2022, 73(2): 535-565. |
| ZHAO Jiateng, WU Chenhui, DAI Yucheng, et al. Research progress on heat transfer enhancement and application of oscillating heat pipe[J]. CIESC Journal, 2022, 73(2): 535-565. | |
| 3 | 陈萌, 李静静. 脉动热管用于电动汽车锂电池散热性能试验[J]. 化工进展, 2021, 40(6): 3163-3171. |
| CHEN Meng, LI Jingjing. Experiment on heat dissipation performance of electric vehicle lithium battery based on pulsating heat pipe[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3163-3171. | |
| 4 | 高婷婷, 蒋振, 吴晓毅, 等. 微乳液脉动热管应用于锂离子电池的散热性能[J]. 化工进展, 2023, 42(3): 1167-1177. |
| GAO Tingting, JIANG Zhen, WU Xiaoyi, et al. Experimental investigation on lithium-ion battery heat dissipation performance of oscillating heat pipe with micro-nano emulsion[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1167-1177. | |
| 5 | 张双星, 刘舫辰, 张义飞, 等. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
| ZHANG Shuangxing, LIU Fangchen, ZHANG Yifei, et al. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe[J]. CIESC Journal, 2023, 74(S1): 165-171. | |
| 6 | XU Yanyan, XUE Yanqin, QI Hong, et al. Experimental study on heat transfer performance of pulsating heat pipes with hybrid working fluids[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119727. |
| 7 | QAZI Mohsin J, SCHLEGEL Simon J, BACKUS Ellen H G, et al. Dynamic surface tension of surfactants in the presence of high salt concentrations[J]. Langmuir, 2020, 36(27): 7956-7964. |
| 8 | 李本刚, 陈正国. 表面活性剂溶液动态表面张力及吸附动力学研究[J]. 化学进展, 2005, 17(2): 233-241. |
| LI Bengang, CHEN Zhengguo. Advance on the study of dynamic surface tension and adsorption kinetics of surfactant solution[J]. Progress in Chemistry, 2005, 17(2): 233-241. | |
| 9 | 郑开明, 徐荣吉, 王瑞祥, 等. 工质表面张力和黏度对脉动热管启动及传热热阻的影响[J]. 化工进展, 2017, 36(8): 2816-2821. |
| ZHENG Kaiming, XU Rongji, WANG Ruixiang, et al. Influence of surface tension and viscosity on the start-up time and thermal resistance of pulsating heat pipe[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2816-2821. | |
| 10 | HU Zhiyong, WANG Liqiong, GUO Jianfeng, et al. Interaction of a novel anionic gemini surfactant containing a triazine ring with cetyltrimethylammonium bromide in aqueous solution[J]. Journal of Surfactants and Detergents, 2015, 18(1): 17-24. |
| 11 | TANG Yu, DU Biying, YANG Jun, et al. Temperature effects on surface activity and application in oxidation of toluene derivatives of CTAB-SDS with KMnO4 [J]. Journal of Chemical Sciences, 2006, 118(3): 281-285. |
| 12 | Kabita JHA, BHATTARAI Ajaya, CHATTERJEE Sujeet Kumar. Determination of critical micelle concentration of cetyltrimethylammonium bromide in presence and absence of KCl and NaCl in aqueous media at room temperature by viscosity measurement[J]. BIBECHANA, 2014, 11: 131-135. |
| 13 | BHARDWAJ Prashant, KAMIL Mohammad, PANDA Manorama. Surfactant-polymer interaction: Effect of hydroxypropylmethyl cellulose on the surface and solution properties of gemini surfactants[J]. Colloid and Polymer Science, 2018, 296(11): 1879-1889. |
| 14 | KHADEMI Mahmoud, WANG Wuchun, REITINGER Wolfgang, et al. Zeta potential of poly(methyl methacrylate) (PMMA) in contact with aqueous electrolyte-surfactant solutions[J]. Langmuir, 2017, 33(40): 10473-10482. |
| 15 | WANG X H, ZHENG H C, SI M Q, et al. Experimental investigation of the influence of surfactant on the heat transfer performance of pulsating heat pipe[J]. International Journal of Heat and Mass Transfer, 2015, 83: 586-590. |
| 16 | BAO Kangli, WANG Xuehui, FANG Yibo, et al. Effects of the surfactant solution on the performance of the pulsating heat pipe[J]. Applied Thermal Engineering, 2020, 178: 115678. |
| 17 | 杨洪海, 张苗, 刘利伟, 等. 氧化石墨烯/水脉动热管传热强化及性能预测[J]. 化工进展, 2022, 41(4): 1725-1734. |
| YANG Honghai, ZHANG Miao, LIU Liwei, et al. Heat transfer performance enhancement and prediction in GO/water pulsating heat pipe[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1725-1734. | |
| 18 | 施赛燕, 崔晓钰, 周宇, 等. 石墨烯/去离子水纳米流体振荡热管传热性能[J]. 化工学报, 2016, 67(12): 4944-4950. |
| SHI Saiyan, CUI Xiaoyu, ZHOU Yu, et al. Heat transfer performance of pulsating heat pipe with graphene aqueous nanofluids[J]. CIESC Journal, 2016, 67(12): 4944-4950. | |
| 19 | XING Meibo, WANG Ruixiang, XU Rongji. Experimental study on thermal performance of a pulsating heat pipe with surfactant aqueous solution[J]. International Journal of Heat and Mass Transfer, 2018, 127: 903-909. |
| 20 | GANDOMKAR A, KALAN K, VANDADI M, et al. Investigation and visualization of surfactant effect on flow pattern and performance of pulsating heat pipe[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(3): 2099-2107. |
| 21 | BASTAKOTI Durga, ZHANG Hongna, CAI Weihua, et al. An experimental investigation of thermal performance of pulsating heat pipe with alcohols and surfactant solutions[J]. International Journal of Heat and Mass Transfer, 2018, 117: 1032-1040. |
| 22 | 金谷. 表面活性剂化学[M]. 合肥: 中国科学技术大学出版社, 2008: 318. |
| JIN Gu. Surfactant chemistry[M]. Hefei: University of Science and Technology of China Press, 2008: 318. | |
| 23 | 宋新南, 顾加强, 胡自成, 等. 表面活性剂水溶液池核沸腾换热试验[J]. 江苏大学学报(自然科学版), 2010, 31(2): 184-188. |
| SONG Xinnan, GU Jiaqiang, HU Zicheng, et al. An experiment on nucleate pool boiling heat transfer of aqueous surfactant solutions[J]. Journal of Jiangsu University (Natural Science Edition), 2010, 31(2): 184-188. | |
| 24 | 苏亚欣. 传热学[M]. 北京: 机械工业出版社, 2023: 289. |
| SU Yaxin. Heat transfer[M]. Beijing: China Machine Press, 2023: 289. | |
| 25 | LI Yuyang, CHANG Guofeng, ZHAO Wang, et al. Effects of surfactant CTAB on performance of flat-plate CLPHP based on PEMFC cooling[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123226. |
| 26 | WEN Tao, LUO Jielin, JIAO Kai, et al. Pool boiling heat transfer enhancement of aqueous solution with quaternary ammonium cationic surfactants on copper surface[J]. International Journal of Heat and Mass Transfer, 2022, 190: 122761. |
| 27 | WU Wuu-Tsann, YANG Yumin, Jer-Ru MAA. Enhancement of nucleate boiling heat transfer and depression of surface tension by surfactant additives[J]. Journal of Heat Transfer, 1995, 117(2): 526-529. |
| 28 | PHAN Chi M, LE Thu N, YUSA Shin-ichi. A new and consistent model for dynamic adsorption of CTAB at air/water interface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 406: 24-30. |
| 29 | EASTOE J, DALTON J S. Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface[J]. Advances in Colloid and Interface Science, 2000, 85(2/3): 103-144. |
| [1] | LIANG Yongqi, TANG Jian, XIA Heng, CHEN Jiakun, QIAO Junfei. Modeling and analysis of particulate matter concentration in incinerator under benchmark conditions based on coupled numerical simulation [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 106-120. |
| [2] | LI Lei, ZHAO Yanmin, TIAN Haiyang, LI Jiangwei, ZHOU Qiang, HE Jiani, WU Wanyue. Simulation and optimization of low energy consumption and high efficiency capture process for low concentration CO2 in flue gas [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 581-589. |
| [3] | YIN Ran, MU Ye, HUO Fuyong, CAO Qinliang, LIN Ganggui, WANG Yijie, HUANG Qiyu. Influence of crude oil composition and wax crystal structure on the damage and recovery of JH shale oil structure [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 590-596. |
| [4] | LI Haoran, WANG Yan, ZHANG Tao, LYU Li, TANG Wenxiang, TANG Shengwei. Controllable regulation of microdroplets size in W/O microemulsion with Cu(Ac)2-Zn(Ac)2 solution as aqueous phase [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5168-5176. |
| [5] | LI Kai, WEI Helin, YIN Zhifan, ZUO Xiahua, YU Xiaoyu, YIN Hongyuan, YANG Weimin, YAN Hua, AN Ying. Prediction of thermal conductivity and viscosity of water-based carbon black nanofluids based on GA-BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4138-4147. |
| [6] | YANG Panbin, DING Guodong, CHEN Jiaqing, FENG Zixia, ZHENG Jiayuan. Working performance of jet strengthening non-packing dissolved air equipment [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2977-2985. |
| [7] | JING Peiyu, ZHU Yu, SUN Jie, HUANG Wanni, GUO Yuying, WANG Yating, ZHENG Zhiyi, DING Wei. Analysis of drag reduction characteristics of water ring transportation in high viscosity oil horizontal pipeline [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2996-3006. |
| [8] | MIAO Yihe, WANG Yaozu, LIU Yuhang, ZHU Xuancan, LI Jia, YU Lijun. Research progress on the improving effect of additives on supported amine adsorbents for carbon capture [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2739-2759. |
| [9] | WANG Bing, WANG Lei, HUANG Xinru, YUAN Hongpeng, LAI Xiaojuan, LI Peng. Synthesis and performance test of an acid and alkali resistant high strength resin [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1992-2000. |
| [10] | YU Yanfang, DING Pengcheng, MENG Huibo, SHI Bowen, YAO Yunjuan. Heat transfer enhancement of non-Newtonian fluid in the blade-type static mixer [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1145-1156. |
| [11] | HUANG Meng, SUN Zhigao, XU Wenchao, ZHANG Huanran, YANG Yang. Promotion of HCFC-141b hydrate production by lactone sophorolipids [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1199-1205. |
| [12] | LU Zhiqiang, SHI Yu, CHEN Pengyu, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of a vertical thermally regenerative ammonia-based battery with a high-concentration ammonia chamber [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1224-1231. |
| [13] | LIU Zepeng, ZENG Jijun, TANG Xiaobo, ZHAO Bo, HAN Sheng, LIAO Yuanhao, ZHANG Wei. Thermodynamic properties of four alkyl imidazolium phosphate ionic liquids [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1484-1491. |
| [14] | WANG Kai, LUO Mingliang, LI Mingzhong, HUANG Feifei, PU Chunsheng, PU Jingyang, FAN Qiao. Research progress of polyethyleneimine crosslinked polymer gel system in water-drive reservoirs [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1506-1523. |
| [15] | ZHAO Ruiqiang, ZHOU Xin, NIU Bingxin. Construction of a coupled process integrating dissimilatory nitrate reduction and anaerobic ammonia oxidation/denitrification for wastewater treatment [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1593-1605. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |