Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (6): 3393-3404.DOI: 10.16085/j.issn.1000-6613.2024-0692
• Chemical processes and equipment • Previous Articles
SHAN Linghai1(
), DUAN Huanhuan1,2, ZHENG Xuming1, HUANG Xiaohuang1, CUI Guomin1(
)
Received:2024-04-25
Revised:2024-06-10
Online:2025-07-08
Published:2025-06-25
Contact:
CUI Guomin
单灵海1(
), 段欢欢1,2, 郑旭铭1, 黄晓璜1, 崔国民1(
)
通讯作者:
崔国民
作者简介:单灵海(1998—),男,硕士研究生,研究方向为过程系统优化。E-mail:shanlinghai@126.com。
基金资助:CLC Number:
SHAN Linghai, DUAN Huanhuan, ZHENG Xuming, HUANG Xiaohuang, CUI Guomin. A new competitive enhancement strategy for heat exchange units and optimization of heat exchange networks[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3393-3404.
单灵海, 段欢欢, 郑旭铭, 黄晓璜, 崔国民. 一种新的换热单元竞争强化策略优化换热网络[J]. 化工进展, 2025, 44(6): 3393-3404.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0692
| 热流股编号 | 进口温度/℃ | 出口温度/℃ | 热容流率/kW·℃-1 | 热负荷/kW | 冷流股编号 | 进口温度/℃ | 出口温度/℃ | 热容流率/kW·℃-1 | 热负荷/kW |
|---|---|---|---|---|---|---|---|---|---|
| H1 | 180 | 75 | 30 | 3150 | C1 | 40 | 230 | 20 | 3800 |
| H2 | 280 | 120 | 15 | 2400 | C2 | 120 | 260 | 35 | 4900 |
| H3 | 180 | 75 | 30 | 3150 | C3 | 40 | 190 | 35 | 5250 |
| H4 | 140 | 45 | 30 | 2850 | C4 | 50 | 190 | 30 | 4200 |
| H5 | 220 | 120 | 25 | 2500 | C5 | 50 | 250 | 20 | 4000 |
| H6 | 180 | 55 | 10 | 1250 | C6 | 40 | 150 | 10 | 1100 |
| H7 | 170 | 45 | 30 | 3750 | C7 | 40 | 150 | 20 | 2200 |
| H8 | 180 | 50 | 30 | 3900 | C8 | 120 | 210 | 35 | 3150 |
| H9 | 280 | 90 | 15 | 2850 | C9 | 40 | 130 | 35 | 3150 |
| H10 | 180 | 60 | 30 | 3600 | C10 | 60 | 120 | 30 | 1800 |
| 热流股编号 | 进口温度/℃ | 出口温度/℃ | 热容流率/kW·℃-1 | 热负荷/kW | 冷流股编号 | 进口温度/℃ | 出口温度/℃ | 热容流率/kW·℃-1 | 热负荷/kW |
|---|---|---|---|---|---|---|---|---|---|
| H1 | 180 | 75 | 30 | 3150 | C1 | 40 | 230 | 20 | 3800 |
| H2 | 280 | 120 | 15 | 2400 | C2 | 120 | 260 | 35 | 4900 |
| H3 | 180 | 75 | 30 | 3150 | C3 | 40 | 190 | 35 | 5250 |
| H4 | 140 | 45 | 30 | 2850 | C4 | 50 | 190 | 30 | 4200 |
| H5 | 220 | 120 | 25 | 2500 | C5 | 50 | 250 | 20 | 4000 |
| H6 | 180 | 55 | 10 | 1250 | C6 | 40 | 150 | 10 | 1100 |
| H7 | 170 | 45 | 30 | 3750 | C7 | 40 | 150 | 20 | 2200 |
| H8 | 180 | 50 | 30 | 3900 | C8 | 120 | 210 | 35 | 3150 |
| H9 | 280 | 90 | 15 | 2850 | C9 | 40 | 130 | 35 | 3150 |
| H10 | 180 | 60 | 30 | 3600 | C10 | 60 | 120 | 30 | 1800 |
| 迭代步数 | 换热单元数 | 换热单元换热量/KW | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| H1-C4 | H4-C8 | H9-C5 | H2-C6 | H4-C9 | H4-C9 | H10-C10 | H3-C8 | H2-C9 | ||
| 60 | 2 | 374.0 | 244.6 | — | — | — | — | — | — | — |
| 220 | 2 | 1817.4 | 391.2 | — | — | — | — | — | — | — |
| 230 | 3 | 1836.2 | 356.3 | 111.4 | — | — | — | — | — | — |
| 250 | 4 | 1828.9 | 387.7 | 470.4 | 52.6 | — | — | — | — | — |
| 260 | 5 | 2018.6 | 251.9 | 472.8 | 111.2 | 151.0 | — | — | — | — |
| 310 | 5 | 2450.8 | 195.8 | 831.3 | 560.3 | 397.1 | — | — | — | — |
| 410 | 6 | 3033.7 | — | 1300.3 | 985.8 | 1045.1 | 424.4 | 352.5 | — | — |
| 510 | 7 | 3155.3 | — | 1933.1 | 1130.9 | 1360.0 | 592.3 | 892.8 | 131.0 | — |
| 560 | 8 | 3165.6 | — | 2171.3 | 1104.6 | 1499.5 | 488.0 | 966.0 | 554.3 | 157.4 |
| 860 | 8 | 3146.4 | — | 2860.8 | 1006.3 | 1448.5 | 112.0 | 1808.2 | 1136.5 | 876.4 |
| 870 | 7 | 3146.4 | — | 2876.7 | 1028.4 | 1650.7 | — | 1859.4 | 1190.7 | 877.2 |
| 1000 | 7 | 3158.9 | — | 2878.1 | 1089.1 | 1604.9 | — | 1842.3 | 1194.6 | 1177.4 |
| 迭代步数 | 换热单元数 | 换热单元换热量/KW | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| H1-C4 | H4-C8 | H9-C5 | H2-C6 | H4-C9 | H4-C9 | H10-C10 | H3-C8 | H2-C9 | ||
| 60 | 2 | 374.0 | 244.6 | — | — | — | — | — | — | — |
| 220 | 2 | 1817.4 | 391.2 | — | — | — | — | — | — | — |
| 230 | 3 | 1836.2 | 356.3 | 111.4 | — | — | — | — | — | — |
| 250 | 4 | 1828.9 | 387.7 | 470.4 | 52.6 | — | — | — | — | — |
| 260 | 5 | 2018.6 | 251.9 | 472.8 | 111.2 | 151.0 | — | — | — | — |
| 310 | 5 | 2450.8 | 195.8 | 831.3 | 560.3 | 397.1 | — | — | — | — |
| 410 | 6 | 3033.7 | — | 1300.3 | 985.8 | 1045.1 | 424.4 | 352.5 | — | — |
| 510 | 7 | 3155.3 | — | 1933.1 | 1130.9 | 1360.0 | 592.3 | 892.8 | 131.0 | — |
| 560 | 8 | 3165.6 | — | 2171.3 | 1104.6 | 1499.5 | 488.0 | 966.0 | 554.3 | 157.4 |
| 860 | 8 | 3146.4 | — | 2860.8 | 1006.3 | 1448.5 | 112.0 | 1808.2 | 1136.5 | 876.4 |
| 870 | 7 | 3146.4 | — | 2876.7 | 1028.4 | 1650.7 | — | 1859.4 | 1190.7 | 877.2 |
| 1000 | 7 | 3158.9 | — | 2878.1 | 1089.1 | 1604.9 | — | 1842.3 | 1194.6 | 1177.4 |
| 作者 | 年份 | 方法 | TAC/USD·a-1 | 换热单元数 |
|---|---|---|---|---|
| Luo等[ | 2009 | 混合GA | 1753271 | 26 |
| Laukkanen等[ | 2012 | GAMS | 1739778 | 24 |
| Zhang等[ | 2016 | CAS | 1731679 | 23 |
| Pavão等[ | 2017 | SA-PSO | 1763488 | 23 |
| 陈鹏和罗娜[ | 2019 | DE | 1746852 | 23 |
| Xu等[ | 2019 | RSFCC-RWCE | 1726399 | 23 |
| Wu等[ | 2021 | CLPSO | 1739000 | 22 |
| Feyli等[ | 2022 | GA | 1753270 | 26 |
| 本文 | 2023 | CHEU-RWCE | 1717757 | 24 |
| 作者 | 年份 | 方法 | TAC/USD·a-1 | 换热单元数 |
|---|---|---|---|---|
| Luo等[ | 2009 | 混合GA | 1753271 | 26 |
| Laukkanen等[ | 2012 | GAMS | 1739778 | 24 |
| Zhang等[ | 2016 | CAS | 1731679 | 23 |
| Pavão等[ | 2017 | SA-PSO | 1763488 | 23 |
| 陈鹏和罗娜[ | 2019 | DE | 1746852 | 23 |
| Xu等[ | 2019 | RSFCC-RWCE | 1726399 | 23 |
| Wu等[ | 2021 | CLPSO | 1739000 | 22 |
| Feyli等[ | 2022 | GA | 1753270 | 26 |
| 本文 | 2023 | CHEU-RWCE | 1717757 | 24 |
| 作者 | 年份 | 方法 | TAC/USD·a-1 | 换热单元数 |
|---|---|---|---|---|
| Huang等[ | 2012 | BARON/GAMS | 5617431 | 18 |
| He和Cui [ | 2013 | MPM | 5609271 | 18 |
| Huo等[ | 2013 | GA-PSO | 5645688 | 13 |
| Peng和Cui [ | 2015 | 双层GA | 5596079 | 18 |
| Pourfarhady Myankooh和Shafiei [ | 2016 | ACOR | 5640721 | 15 |
| 张春伟等[ | 2017 | ACS | 5606692 | 21 |
| Xiao和Cui [ | 2017 | RWCE | 5589493 | 22 |
| Feyli等[ | 2022 | GA | 5624661 | 18 |
| 本文 | 2023 | CHEU-RWCE | 5586693 | 23 |
| 作者 | 年份 | 方法 | TAC/USD·a-1 | 换热单元数 |
|---|---|---|---|---|
| Huang等[ | 2012 | BARON/GAMS | 5617431 | 18 |
| He和Cui [ | 2013 | MPM | 5609271 | 18 |
| Huo等[ | 2013 | GA-PSO | 5645688 | 13 |
| Peng和Cui [ | 2015 | 双层GA | 5596079 | 18 |
| Pourfarhady Myankooh和Shafiei [ | 2016 | ACOR | 5640721 | 15 |
| 张春伟等[ | 2017 | ACS | 5606692 | 21 |
| Xiao和Cui [ | 2017 | RWCE | 5589493 | 22 |
| Feyli等[ | 2022 | GA | 5624661 | 18 |
| 本文 | 2023 | CHEU-RWCE | 5586693 | 23 |
| [1] | CHEN Yang, GROSSMANN Ignacio E, MILLER David C. Computational strategies for large-scale MILP transshipment models for heat exchanger network synthesis[J]. Computers & Chemical Engineering, 2015, 82: 68-83. |
| [2] | MISTRY Miten, MISENER Ruth. Optimising heat exchanger network synthesis using convexity properties of the logarithmic mean temperature difference[J]. Computers & Chemical Engineering, 2016, 94: 1-17. |
| [3] | LARA Yolanda, LISBONA Pilar, Ana MARTÍNEZ, et al. Design and analysis of heat exchanger networks for integrated Ca-looping systems[J]. Applied Energy, 2013, 111: 690-700. |
| [4] | SUN Lin, LUO Xionglin, ZHAO Ye. Synthesis of multipass heat exchanger network with the optimal number of shells and tubes based on pinch technology[J]. Chemical Engineering Research and Design, 2015, 93: 185-193. |
| [5] | JIANG Ning, SHELLEY Jacob David, DOYLE Steve, et al. Heat exchanger network retrofit with a fixed network structure[J]. Applied Energy, 2014, 127: 25-33. |
| [6] | LOTFI Roghayeh, BOOZARJOMEHRY Ramin B. Superstructure optimization in heat exchanger network (HEN) synthesis using modular simulators and a genetic algorithm framework[J]. Industrial & Engineering Chemistry Research, 2010, 49(10): 4731-4737. |
| [7] | AGUITONI Maria Claudia, PAVÃO Leandro Vitor, ANTONIO DA SILVA SÁ RAVAGNANI Mauro. Heat exchanger network synthesis combining Simulated Annealing and Differential Evolution[J]. Energy, 2019, 181: 654-664. |
| [8] | DOLAN W B, CUMMINGS P T, LEVAN M D. Process optimization via simulated annealing: Application to network design[J]. AIChE Journal, 1989, 35(5): 725-736. |
| [9] | YERRAMSETTY Krishna M, MURTY C V S. Synthesis of cost-optimal heat exchanger networks using differential evolution[J]. Computers & Chemical Engineering, 2008, 32(8): 1861-1876. |
| [10] | 肖媛, 崔国民, 李帅龙. 一种新的用于换热网络全局优化的强制进化随机游走算法[J]. 化工学报, 2016, 67(12): 5140-5147. |
| XIAO Yuan, CUI Guomin, LI Shuailong. A novel random walk algorithm with compulsive evolution for global optimization of heat exchanger networks[J]. CIESC Journal, 2016, 67(12): 5140-5147. | |
| [11] | 韩正恒, 崔国民, 赵倩倩, 等. RWCE算法中采用单元重构策略激励换热网络结构优化[J]. 化工学报, 2021, 72(6): 3316-3327. |
| HAN Zhengheng, CUI Guomin, ZHAO Qianqian, et al. Impelling structural optimization of heat exchanger network by unitreconfiguration strategy in RWCE algorithm[J]. CIESC Journal, 2021, 72(6): 3316-3327. | |
| [12] | 张璐, 崔国民, 刘薇薇, 等. 基于小负荷换热单元保护的松弛策略优化换热网络[J]. 计算物理, 2022, 39(3): 352-360. |
| ZHANG Lu, CUI Guomin, LIU Weiwei, et al. Optimization of heat exchanger network based on relaxation strategy of small heat exchanger protection[J]. Chinese Journal of Computational Physics, 2022, 39(3): 352-360. | |
| [13] | HUANG Xiaohuang, XU Yue, XIAO Yuan, et al. An anti-greedy random walk algorithm for heat exchanger network synthesis[J]. Chemical Engineering Research and Design, 2024, 203: 219-232. |
| [14] | 肖媛. 换热网络热集成的全局优化方法及超结构模型研究[D]. 上海: 上海理工大学, 2018. |
| XIAO Yuan. Global optimization method and superstructure model of heat integration of heat exchanger network[D]. Shanghai: University of Shanghai for Science & Technology, 2018. | |
| [15] | YEE T F, GROSSMANN I E, KRAVANJA Z. Simultaneous optimization models for heat integration—Ⅲ. Process and heat exchanger network optimization[J]. Computers & Chemical Engineering, 1990, 14(11): 1185-1200. |
| [16] | XIAO Wu, DONG Hongguang, LI Xinqiang, et al. Synthesis of large-scale multistream heat exchanger networks based on stream pseudo temperature[J]. Chinese Journal of Chemical Engineering, 2006, 14(5):574-583. |
| [17] | 陈鹏, 罗娜. 基于竞争机制差分进化算法的无分流换热网络优化[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 970-979. |
| CHEN Peng, LUO Na. Differential evolution algorithm with competition mechanism for simultaneous synthesis of heat exchanger network without split streams[J]. Journal of East China University of Science and Technology, 2019, 45(6): 970-979. | |
| [18] | WU Xianli, XU Jie, HU Yangdong, et al. Improved heat exchanger network synthesis without stream splits based on comprehensive learning particle swarm optimizer[J]. ACS Omega, 2021, 6(44): 29459-29470. |
| [19] | FEYLI Babak, SOLTANI Hadi, HAJIMOHAMMADI Reza, et al. A reliable approach for heat exchanger networks synthesis with stream splitting by coupling genetic algorithm with modified quasi-linear programming method[J]. Chemical Engineering Science, 2022, 248: 117140. |
| [20] | LUO Xing, FIEG Georg, CAI Kang, et al. Synthesis of large-scale heat exchanger networks by a monogenetic algorithm[J]. Computer Aided Chemical Engineering, 2009, 27: 729-734. |
| [21] | LAUKKANEN Timo, TVEIT Tor-Martin, OJALEHTO Vesa, et al. Bilevel heat exchanger network synthesis with an interactive multi-objective optimization method[J]. Applied Thermal Engineering, 2012, 48: 301-316. |
| [22] | ZHANG Chunwei, CUI Guomin, PENG Fuyu. A novel hybrid chaotic ant swarm algorithm for heat exchanger networks synthesis[J]. Applied Thermal Engineering, 2016, 104: 707-719. |
| [23] | PAVÃO Leandro Vitor, COSTA Caliane Bastos Borba, RAVAGNANI Mauro Antonio da Silva Sá, et al. Large-scale heat exchanger networks synthesis using simulated annealing and the novel rocket fireworks optimization[J]. AIChE Journal, 2017, 63(5): 1582-1601. |
| [24] | XU Yue, CUI Guomin, DENG Weidong, et al. Relaxation strategy for heat exchanger network synthesis with fixed capital cost[J]. Applied Thermal Engineering, 2019, 152: 184-195. |
| [25] | AHMAD. Heat exchanger networks : Cost tradeoffs in energy and capital[D]. Manchester: University of Manchester Institute of Science and Technology, 1985. |
| [26] | PENG Fuyu, CUI Guomin. Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm[J]. Applied Thermal Engineering, 2015, 78: 136-149. |
| [27] | POURFARHADY MYANKOOH Yaser, SHAFIEI Sirous. A specific strategy for determination of feasible domain of heat exchanger networks with no stream splitting and its assessment by application of ACOR Algorithm[J]. Applied Thermal Engineering, 2016, 104: 791-803. |
| [28] | HUANG KE feng, AL-MUTAIRI Eid M, KARIMI I A. Heat exchanger network synthesis using a stagewise superstructure with non-isothermal mixing[J]. Chemical Engineering Science, 2012, 73: 30-43. |
| [29] | HE Qiaole, CUI Guomin. A principle of stream arrangement based on uniformity factor for heat exchanger networks synthesis[J]. Applied Thermal Engineering, 2013, 61(2): 93-100. |
| [30] | HUO Zhaoyi, ZHAO Liang, YIN Hongchao, et al. Simultaneous synthesis of structural-constrained heat exchanger networks with and without stream splits[J]. The Canadian Journal of Chemical Engineering, 2013, 91(5): 830-842. |
| [31] | 张春伟, 崔国民, 陈上. 一种适用换热网络同步综合的改进混沌蚁群算法[J]. 计算物理, 2017, 34(2): 193-204. |
| ZHANG Chunwei, CUI Guomin, CHEN Shang. An improved chaotic ant swarm algorithm for simultaneous synthesis of heat exchanger network[J]. Chinese Journal of Computational Physics, 2017, 34(2): 193-204. | |
| [32] | XIAO Yuan, CUI Guomin. A novel Random Walk algorithm with Compulsive Evolution for heat exchanger network synthesis[J]. Applied Thermal Engineering, 2017, 115: 1118-1127. |
| [1] | YANG Sen, XUE Zijie, WANG Yufei, ZHAO Liang, XU Chunming. Low carbon transformation and research status of chemical industry based on green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3288-3304. |
| [2] | WANG Xiaonan, FU Siwei, LIU Kuan, LIN Congsheng, LIN Xiaofeng. Machine learning methods for sustainable alternatives and transition of energy materials [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2767-2776. |
| [3] | AI Jiazhen, ZHANG Zhenlei, ZHAN Guoxiong, MA Longwei, SHI Guojing, YIN Haichuan, ZHANG Xiangping. Advances in "lignin-first" reductive catalytic fractionation process and simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2683-2693. |
| [4] | LI Ziliang, ZHANG Wei, HU Heng, WANG Yingjin, XU Na. mGAN-NN method for low-cost chemical process modeling based on generative adversarial networks [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1978-1986. |
| [5] | REN Shipeng, AN Yuan, LOU Chun, MEI Shengdong, LIU Kai, CHEN Xinjian. Online reconstruction of combustion temperature field distribution in furnace by integrating deep learning algorithm [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1923-1933. |
| [6] | XIONG Siheng, HUANG Dongmei, XIAO Yuan, HUANG Xiaohuang, YI Zhikang, CUI Guomin. Novel continuous non-structural model for mass exchanger network synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 635-645. |
| [7] | ZHANG Qian, LIU Xin, WANG Bing, XU Jing, CAO Chenxi. Quantitative analysis of domino effects in large tank farms under various wind conditions and accident scenarios [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1170-1182. |
| [8] | XIAO Yuan, CHEN Yi, LIU Siqi, CUI Guomin. Mass-heat analogy and global optimization of mass exchange network based on generalized heat exchanger network [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 121-134. |
| [9] | WANG Yanan, LIU Linlin, ZHUANG Yu, DU Jian. Synchronous optimization and heat integration of the production process from EO to EG based on surrogate model [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5234-5241. |
| [10] | ZHANG Xiaotian, LIU Siqi, CUI Guomin, HUANG Xiaohuang, DUAN Huanhuan, WANG Jinyang. Heat exchanger network synthesis based on directional coordination strategy to improve heat exchange unit optimization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4342-4353. |
| [11] | YI Zhikang, LIU Siqi, CUI Guomin, DUAN Huanhuan, XIAO Yuan. A chessboard model for incompatible multi-component mass exchange network optimization [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2986-2995. |
| [12] | ZHENG Kexin, JIANG Yuxin, BI Kexin, ZHAO Qiming, CHEN Shaochen, WANG Bingbing, REN Junyu, JI Xu, QIU Tong, DAI Yiyang. Ensemble transfer learning framework for outflow compositions prediction in steam cracking process [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2880-2889. |
| [13] | LI Ping, CHEN Xiule, ZHANG Qiang, NIAN Tengfei, WANG Yuxing, WANG Meng. Optimization of compounding ratio of fume-suppressing asphalt and evaluation of its effect of fume suppression [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1923-1933. |
| [14] | ZHANG Shuming, LIU Huazhang. Optimization of Fe1-x O ammonia synthesis catalyst by BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1302-1308. |
| [15] | WANG Yue, SUN Kai, LIU Yan, CHEN Long, ZHU Xiaoyu, XU Chuanlong. Light field bubble tracking velocimetry based on the global bubble position iteration and polar coordinate system similarity algorithm [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 844-854. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |