Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2683-2693.DOI: 10.16085/j.issn.1000-6613.2024-1855
• Renewable energy utilization • Previous Articles
AI Jiazhen1(
), ZHANG Zhenlei1(
), ZHAN Guoxiong2, MA Longwei1, SHI Guojing1, YIN Haichuan1, ZHANG Xiangping1,2(
)
Received:2024-11-12
Revised:2025-04-02
Online:2025-05-20
Published:2025-05-25
Contact:
ZHANG Zhenlei, ZHANG Xiangping
艾佳臻1(
), 张振磊1(
), 詹国雄2, 马龙巍1, 史国靖1, 尹海川1, 张香平1,2(
)
通讯作者:
张振磊,张香平
作者简介:艾佳臻(1994—),女,博士研究生,研究方向为绿色系统集成。E-mail:2023310255@student.cup.edu.cn。
基金资助:CLC Number:
AI Jiazhen, ZHANG Zhenlei, ZHAN Guoxiong, MA Longwei, SHI Guojing, YIN Haichuan, ZHANG Xiangping. Advances in "lignin-first" reductive catalytic fractionation process and simulation[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2683-2693.
艾佳臻, 张振磊, 詹国雄, 马龙巍, 史国靖, 尹海川, 张香平. “木质素优先”还原催化分馏工艺与模拟研究进展[J]. 化工进展, 2025, 44(5): 2683-2693.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1855
| 原料 | 溶剂 | 催化剂 | 反应条件 | 单体产率/% | 参考文献 |
|---|---|---|---|---|---|
| 桦木 | 甲醇 | Ru/C | 250℃,30bar H2,3h | 52.0 | [ |
| 白桦树 | γ-戊内酯/水/甲醛 | Pd/Ru | 120℃,2bar H2,2h | 50.0 | [ |
| 杨木 | 异丙醇/水 | Raney Ni | 220℃,无氢气,3h | 26.0 | [ |
| 杨木 | 草酸/乙二醇/氯化胆碱 | Ru/C | 180℃,无氢气,3h | 13.8 | [ |
| 杨木 | 乙二醇 | Ru/C | 230℃,30bar H2,3h | 11.8 | [ |
| 桦木 | 乙醇/水/甲酸/甲酸钠 | Co-phen/C | 200℃,无氢气,4h | 34.0 | [ |
| 松树 | 1,3-二甲氧基丙-2-醇/乙酸/水 | Pt/C | 200℃,无氢气,4h | 24.9 | [ |
| 油茶花壳 | 乙醇/水 | Pd/C | 260℃,20bar H2,3h | 17.0 | [ |
| 桉木 | 水 | MoO x /SBA-15 | 260℃,30bar H2,4h | 2.4 | [ |
| 原料 | 溶剂 | 催化剂 | 反应条件 | 单体产率/% | 参考文献 |
|---|---|---|---|---|---|
| 桦木 | 甲醇 | Ru/C | 250℃,30bar H2,3h | 52.0 | [ |
| 白桦树 | γ-戊内酯/水/甲醛 | Pd/Ru | 120℃,2bar H2,2h | 50.0 | [ |
| 杨木 | 异丙醇/水 | Raney Ni | 220℃,无氢气,3h | 26.0 | [ |
| 杨木 | 草酸/乙二醇/氯化胆碱 | Ru/C | 180℃,无氢气,3h | 13.8 | [ |
| 杨木 | 乙二醇 | Ru/C | 230℃,30bar H2,3h | 11.8 | [ |
| 桦木 | 乙醇/水/甲酸/甲酸钠 | Co-phen/C | 200℃,无氢气,4h | 34.0 | [ |
| 松树 | 1,3-二甲氧基丙-2-醇/乙酸/水 | Pt/C | 200℃,无氢气,4h | 24.9 | [ |
| 油茶花壳 | 乙醇/水 | Pd/C | 260℃,20bar H2,3h | 17.0 | [ |
| 桉木 | 水 | MoO x /SBA-15 | 260℃,30bar H2,4h | 2.4 | [ |
| 项目 | 甲醇 | 乙醇 | 无氢 | 乙二醇 |
|---|---|---|---|---|
| 粗RCF油最低销售价格/USD | 1.12 | 1.18 | 0.76 | 0.98 |
| 木质素部分最低销售价格/USD | 1.74 | 1.88 | 1.34 | 1.51 |
| 单体部分最低销售价格/USD | 3.63 | 3.76 | 7.58 | 3.07 |
| 木质素部分全球变暖潜能值 /kg CO2·kg-1 | 0.079 | -0.175 | -0.018 | 0.392 |
| 木质素部分累积能源需求/MJ | 74.03 | 77.47 | 75.36 | 77.93 |
| 项目 | 甲醇 | 乙醇 | 无氢 | 乙二醇 |
|---|---|---|---|---|
| 粗RCF油最低销售价格/USD | 1.12 | 1.18 | 0.76 | 0.98 |
| 木质素部分最低销售价格/USD | 1.74 | 1.88 | 1.34 | 1.51 |
| 单体部分最低销售价格/USD | 3.63 | 3.76 | 7.58 | 3.07 |
| 木质素部分全球变暖潜能值 /kg CO2·kg-1 | 0.079 | -0.175 | -0.018 | 0.392 |
| 木质素部分累积能源需求/MJ | 74.03 | 77.47 | 75.36 | 77.93 |
| 1 | ZHOU Min, Meiqi LYU, CAI Sulin, et al. Effects of enzymatic hydrolysis and physicochemical properties of lignocellulose waste through different choline based deep eutectic solvents (DESs) pretreatment[J]. Industrial Crops and Products, 2023, 195: 116435. |
| 2 | ZHOU Min, TIAN Xingjun. Development of different pretreatments and related technologies for efficient biomass conversion of lignocellulose[J]. International Journal of Biological Macromolecules, 2022, 202: 256-268. |
| 3 | TUCK Christopher O, Eduardo PÉREZ, HORVÁTH István T, et al. Valorization of biomass: Deriving more value from waste[J]. Science, 2012, 337(6095): 695-699. |
| 4 | SOMERVILLE Chris, YOUNGS Heather, TAYLOR Caroline, et al. Feedstocks for lignocellulosic biofuels[J]. Science, 2010, 329(5993): 790-792. |
| 5 | SCHUTYSER W, RENDERS T, VAN DEN BOSCH S, et al. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading[J]. Chemical Society Reviews, 2018, 47(3): 852-908. |
| 6 | GALKIN Maxim V, SAMEC Joseph S M. Lignin valorization through catalytic lignocellulose fractionation: A fundamental platform for the puture biorefinery[J]. ChemSusChem, 2016, 9(13): 1544-1558. |
| 7 | ABU-OMAR Mahdi M, BARTA Katalin, BECKHAM Gregg T, et al. Guidelines for performing lignin-first biorefining[J]. Energy & Environmental Science, 2021, 14(1): 262-292. |
| 8 | VAN DEN BOSCH S, SCHUTYSER W, VANHOLME R, et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps[J]. Energy & Environmental Science, 2015, 8(6): 1748-1763. |
| 9 | DU Xu, TRICKER Andrew W, YANG Weisheng, et al. Oxidative catalytic fractionation and depolymerization of lignin in a one-pot single-catalyst system[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(23): 7719-7727. |
| 10 | BERTELLA Stefania, LUTERBACHER Jeremy S. Simultaneous extraction and controlled chemical functionalization of hardwood lignin for improved phenolation[J]. Green Chemistry, 2021, 23(9): 3459-3467. |
| 11 | DE SANTI Alessandra, GALKIN Maxim V, LAHIVE Ciaran W, et al. Lignin-first fractionation of softwood lignocellulose using a mild dimethyl carbonate and ethylene glycol organosolv process[J]. ChemSusChem, 2020, 13(17): 4468-4477. |
| 12 | LI Xi, XU Ying, ALORKU Kingdom, et al. A review of lignin-first reductive catalytic fractionation of lignocellulose[J]. Molecular Catalysis, 2023, 550: 113551. |
| 13 | SAGUES William J, BAO Hanxi, NEMENYI John L, et al. Lignin-first approach to biorefining: Utilizing fenton’s reagent and supercritical ethanol for the production of phenolics and sugars[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4958-4965. |
| 14 | RINALDI Roberto, WOODWARD Robert T, FERRINI Paola, et al. Lignin-first biorefining of lignocellulose: The impact of process severity on the uniformity of lignin oil composition[J]. Journal of the Brazilian Chemical Society, 2019, 30(3): 479-491. |
| 15 | SAINI Rahul, OSORIO-GONZALEZ Carlos Saul, HEGDE Krishnamoorthy, et al. Lignocellulosic biomass-based biorefinery: An insight into commercialization and economic standout[J]. Current Sustainable/Renewable Energy Reports, 2020, 7(4): 122-136. |
| 16 | 宋国勇. “木质素优先”策略下林木生物质组分催化分离与转化研究进展[J]. 林业工程学报, 2019, 4(5): 1-10. |
| SONG Guoyong. The development of catalytic fractionation and conversion of lignocellulosic biomass under lignin-first strategy[J]. Journal of Forestry Engineering, 2019, 4(5): 1-10. | |
| 17 | KORÁNYI Tamás I, Bálint FRIDRICH, PINEDA Antonio, et al. Development of ‘lignin-first’ approaches for the valorization of lignocellulosic biomass[J]. Molecules, 2020, 25(12): 2815. |
| 18 | 薛泓坤, 胡晓虹, 张琦, 等. 不同组分优先策略下的生物质三大素分离研究进展[J]. 林产化学与工业, 2024, 44(4): 149-162. |
| XUE Hongkun, HU Xiaohong, ZHANG Qi, et al. Advances in separation of cellulose, hemicellulose and lignin from biomass under different component prioritization strategies[J]. Chemistry and Industry of Forest Products, 2024, 44(4): 149-162. | |
| 19 | 杨旭, 骆治成, 肖睿, 等. “木质素优先”策略下生物质还原催化分离技术研究进展[J]. 能源环境保护, 2023, 37(3): 64-74. |
| YANG Xu, LUO Zhicheng, XIAO Rui, et al. Progress of reductive catalytic fractionation of lignocellulosic biomass based on the lignin-first strategy[J]. Energy Environmental Protection, 2023, 37(3): 64-74. | |
| 20 | 李治宇, 逯炀炀, 王文文, 等. “木质素优先解聚”策略下生物质定向解聚研究进展[J]. 农业工程学报, 2024, 40(1): 129-141. |
| LI Zhiyu, LU Yangyang, WANG Wenwen, et al. Progress in directed biomass depolymerisation under the “lignin-first depolymerisation” strategy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(1): 129-141. | |
| 21 | RINALDI Roberto, JASTRZEBSKI Robin, CLOUGH Matthew T, et al. Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis[J]. Angewandte Chemie International Edition, 2016, 55(29): 8164-8215. |
| 22 | GALKIN Maxim V, SMIT Arjan T, SUBBOTINA Elena, et al. Hydrogen-free catalytic fractionation of woody biomass[J]. ChemSusChem, 2016, 9(23): 3280-3287. |
| 23 | DEL RÍO José C, RENCORET Jorge, MARQUES Gisela, et al. Structural characterization of the lignin from jute (Corchorus capsularis) fibers[J]. Journal of Agricultural and Food Chemistry, 2009, 57(21): 10271-10281. |
| 24 | DEL RÍO José C, RENCORET Jorge, PRINSEN Pepijin, et al. structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods[J]. Journal of Agricultural and Food Chemistry, 2012, 60(23): 5922-5935. |
| 25 | DEL RÍO José C, LINO Alessandro G, COLODETTE Jorge L, et al. Differences in the chemical structure of the lignins from sugarcane bagasse and straw[J]. Biomass and Bioenergy, 2015, 81: 322-338. |
| 26 | PARSELL Trenton, YOHE Sara, DEGENSTEIN John, et al. A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass[J]. Green Chemistry, 2015, 17(3): 1492-1499. |
| 27 | EBIKADE Elvis Osamudiamhen, SAMULEWICZ Nicholas, XUAN Shuangqing, et al. Reductive catalytic fractionation of agricultural residue and energy crop lignin and application of lignin oil in antimicrobials[J]. Green Chemistry, 2020, 22(21): 7435-7447. |
| 28 | HUANG Xiaoming, MORALES GONZALEZ Olivia M, ZHU Jiadong, et al. Reductive fractionation of woody biomass into lignin monomers and cellulose by tandem metal triflate and Pd/C catalysis[J]. Green Chemistry, 2017, 19(1): 175-187. |
| 29 | SU Shihao, XIAO Lingping, CHEN Xue, et al. Lignin-first depolymerization of lignocellulose into monophenols over carbon nanotube-supported ruthenium: Impact of lignin sources[J]. ChemSusChem, 2022, 15(12): e202200365. |
| 30 | VAN DEN BOSCH S, SCHUTYSER W, KOELEWIJN S F, et al. Tuning the lignin oil OH-content with Ru and Pd catalysts during lignin hydrogenolysis on birch wood[J]. Chemical Communications, 2015, 51(67): 13158-13161. |
| 31 | CHEN Jiazhi, LU Fang, SI Xiaoqin, et al. High yield production of natural phenolic alcohols from woody biomass using a nickel-based catalyst[J]. ChemSusChem, 2016, 9(23): 3353-3360. |
| 32 | LIU Xue, LI Helong, XIAO Lingping, et al. Chemodivergent hydrogenolysis of eucalyptus lignin with Ni@ZIF-8 catalyst[J]. Green Chemistry, 2019, 21(6): 1498-1504. |
| 33 | RENDERS Tom, SCHUTYSER Wouter, VAN DEN BOSCH S, et al. Influence of acidic (H3PO4) and alkaline (NaOH) additives on the catalytic reductive fractionation of lignocellulose[J]. ACS Catalysis, 2016, 6(3): 2055-2066. |
| 34 | YE Ke, LIU Ying, WU Shubin, et al. A review for lignin valorization: Challenges and perspectives in catalytic hydrogenolysis[J]. Industrial Crops and Products, 2021, 172: 114008. |
| 35 | SHUAI Li, LUTERBACHER Jeremy. Organic solvent effects in biomass conversion reactions[J]. ChemSusChem, 2016, 9(2): 133-155. |
| 36 | PATEROMICHELAKIS Antreas, PSYCHA Melina, PYRGAKIS Konstantinos, et al. The use of GVL for holistic valorization of biomass[J]. Computers & Chemical Engineering, 2022, 164: 107849. |
| 37 | FERRINI Paola, RINALDI Roberto. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions[J]. Angewandte Chemie International Edition, 2014, 53(33): 8634-8639. |
| 38 | ZHAI Qiaolong, LI Jie, MIAO Kangze, et al. Atmospheric one-pot fractionation and catalytic conversion of lignocellulose in multifunctional deep eutectic solvent system[J]. International Journal of Biological Macromolecules, 2025, 290: 138736. |
| 39 | REN Tianyu, YOU Shengping, ZHANG Zhaofeng, et al. Highly selective reductive catalytic fractionation at atmospheric pressure without hydrogen[J]. Green Chemistry, 2021, 23(4): 1648-1657. |
| 40 | RAUTIAINEN Sari, FRANCESCO Davide Di, KATEA Sarmad Naim, et al. Lignin valorization by cobalt-catalyzed fractionation of lignocellulose to yield monophenolic compounds[J]. ChemSusChem, 2019, 12(2): 404-408. |
| 41 | EKEOMA Bernard C, BARA Jason E, SHEEHAN James D. Glycerol-derived ethers enable hydrogen-free reductive catalytic fractionation of softwood lignin into functionalized aromatic monomers[J]. RSC Sustainability, 2024, 2(10): 2851-2870. |
| 42 | QIU Shukun, LIU Xudong, WU Yiying, et al. Catalytic depolymerization of camellia oleifera shell lignin to phenolic monomers: Insights into the effects of solvent, catalyst and atmosphere[J]. Bioresource Technology, 2024, 412: 131365. |
| 43 | SUN Jiankui, LI Helong, XIAO Lingping, et al. Fragmentation of woody lignocellulose into primary monolignols and their derivatives[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 4666-4674. |
| 44 | SONG Qi, WANG Feng, CAI Jiaying, et al. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process[J]. Energy & Environmental Science, 2013, 6(3): 994. |
| 45 | 于丁一, 李圆圆, 王晨钰, 等. pH 响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
| YU Dingyi, LI Yuanyuan, WANG Chenyu, et al. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. | |
| 46 | 娄瑞, 牛涛嫄, 曹启航, 等. δ-MnO₂原位负载纳米木质素基分级多孔炭的制备及其电化学性能[J]. 化工进展, 2024, 43(2): 1013-1021. |
| LOU Rui, NIU Taoyuan, CAO Qihang, et al. Preparation and electrochemical performances of in-situ growth of δ-MnO2 on hierarchical porous carbon derived from LNP[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1013-1021. | |
| 47 | 关红玲, 杨辉, 井红权, 等. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
| GUAN Hongling, YANG Hui, JING Hongquan, et al. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. | |
| 48 | 白毓黎, 白富栋, 张雷, 等. 木质素基酚醛树脂的制备和过程优化[J]. 化工进展, 2024, 43(2): 1033-1038. |
| BAI Yuli, BAI Fudong, ZHANG Lei, et al. Preparation and process optimization of lignin-based phenolic resin[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1033-1038. | |
| 49 | DAELEMANS Brent, JUSNER Paul, SRIDHARAN Balaji, et al. Pilot-scale reductive catalytic depolymerization of lignin: Challenges and guidelines[J]. Chem, 2025: 102525. |
| 50 | BARTLING Andrew W, STONE Michael L, HANES Rebecca J, et al. Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic fractionation[J]. Energy & Environmental Science, 2021, 14(8): 4147-4168. |
| 51 | ARTS W, STONE VAN AELST K, COOREMAN E, et al. Stepping away from purified solvents in reductive catalytic fractionation: A step forward towards a disruptive wood biorefinery process[J]. Energy & Environmental Science, 2023, 16(6): 2518-2539. |
| 52 | Laura KÖNIG-MATTERN, SANCHEZ MEDINA Edgar I, KOMAROVA Anastasia, et al. Machine learning-supported solvent design for lignin-first biorefineries and lignin upgrading[J]. Chemical Engineering Journal, 2024, 495: 153524. |
| 53 | WEN Huaqiang, Shihao NAN, WU Di, et al. A systematic review on intensifications of artificial intelligence assisted green solvent development[J]. Industrial and Engineering Chemistry Research, 2023, 62(48): 20473-20491. |
| 54 | ZHANG Jun, WANG Qin, EDEN Mario, et al. A deep learning-based framework towards inverse green solvent design for extractive distillation with multi-index constraints[J]. Computers and Chemical Engineering, 2023, 177: 108335. |
| 55 | WU Di, ZHU Zutao, ZHANG Jun, et al. An interpretable solute-solvent interactive attention module intensified graph-learning architecture toward enhancing the prediction accuracy of an infinite dilution activity coefficient[J]. Industrial and Engineering Chemistry Research, 2024, 63(19): 8741-8750. |
| 56 | YANG Lu, LIU Shuoshi, CHANG Chenglin, et al. An efficient and invertible machine learning-driven multi-objective optimization architecture for light olefins separation system[J]. Chemical Engineering Science, 2024, 285: 119553. |
| 57 | RENDERS T, VAN DEN BOSCH S, KOELEWIJN S F, et al. Lignin-first biomass fractionation: the advent of active stabilisation strategies[J]. Energy & Environmental Science, 2017, 10(7): 1551-1557. |
| 58 | CHAN Min Kang, YE Qun, Zhuang Mao PNG, et al. Valorization of lignin: Effective conversion of depolymerized lignin to oil by simple chemical modifications[J]. Waste and Biomass Valorization, 2017, 8: 2029-2036. |
| 59 | YU Shitong, XU Pan, LUO Zhicheng. Catalytic depolymerization and hydrodeoxygenation of lignin to high-density fuel precursors using Ni/Nb2O5 catalyst[J]. Industrial Crops and Products, 2024, 222: 119632. |
| 60 | HUANG Yong, DUAN Yijing, QIU Shi, et al. Lignin-first biorefinery: A reusable catalyst for lignin depolymerization and application of lignin oil to jet fuel aromatics and polyurethane feedstock[J]. Sustainable Energy & Fuels, 2018, 2(3): 637-647. |
| 61 | KOURIS Panos D, BRINI Alberto, SCHEPERS Eline, et al. Optimizing catalytic depolymerization of lignin in ethanol with a day-clustered box-behnken design[J]. Industrial & Engineering Chemistry Research, 2023, 62(18): 6874-6885. |
| 62 | DONG Lin, XIN Yu, LIU Xiaohui, et al. Selective hydrodeoxygenation of lignin oil to valuable phenolics over Au/Nb2O5 in water[J]. Green Chemistry, 2019, 21(11): 3081-3090. |
| 63 | QUINSAAT Jose Enrico Q, FALIREAS Panagiotis G, FEGHALI Elias, et al. Depolymerised lignin oil: A promising building block towards thermoplasticity in polyurethanes[J]. Industrial Crops and Products, 2023, 194: 116305. |
| 64 | PANDALONE Bruno, RAIKWAR Deepak, Thuan A VO, et al. Optimum lignin oil — Finding the most suitable feedstock to replace cycloalkanes in sustainable aviation fuel (SAF)[J]. ChemSusChem, 2025: e202402531. |
| 65 | LIAO Yuhe, KOELEWIJN Steven-Friso, VAN DEN BOSSCHE Gil, et al. A sustainable wood biorefinery for low-carbon footprint chemicals production[J]. Science, 2020, 367(6484): 1385-1390. |
| 66 | 董琳, 陈祖鹏. 木质素源多巴胺的合成新工艺[J]. 科学通报, 2023, 68(31): 4079-4081. |
| DONG Lin, CHEN Zupeng. An innovative strategy for production of dopamine from lignin[J]. Chinese Science Bulletin, 2023, 68(31): 4079-4081. | |
| 67 | DONG Lin, WANG Yanqin, DONG Yuguo, et al. Sustainable production of dopamine hydrochloride from softwood lignin[J]. Nature Communications, 2023, 14(1): 4996. |
| 68 | SHI Tao, ZHOU Jianzhao, REN Jingzheng, et al. Co-valorisation of sewage sludge and poultry litter waste for hydrogen production: Gasification process design, sustainability-oriented optimization, and systematic assessment[J]. Energy, 2023, 272: 127131. |
| 69 | SHI Tao, ABDUL MOKTADIR Md, REN Jingzheng, et al. Comparative economic, environmental and exergy analysis of power generation technologies from the waste sludge treatment[J]. Energy Conversion and Management, 2023, 286: 117074. |
| 70 | TSCHULKOW Maxim, PIZZOL Massimo, COMPERNOLLE Tine, et al. The environmental impacts of the lignin-first biorefineries: A consequential life cycle assessment approach[J]. Resources, Conservation and Recycling, 2024, 204: 107466. |
| [1] | CAO Xianghong, ZHOU Feng, JIANG Rui, LIU Shizhe, FANG Xiangchen, KANG Wanzhong, QIAO Jinliang, NIE Hong. Strategies to accelerate the development of China's bio-based materials industry [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2385-2393. |
| [2] | NIE Hong, XI Yuanbing, GE Panzhu, DING Shi, ZHANG Dengqian. Sustainable aviation fuel production technology and prospects [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2529-2534. |
| [3] | CHEN Yanjun, DAI Jie, SHAN Junqiang, ZHANG Sixin, JI Lei, ZHU Chenjie, YING Hanjie. Research progress and development trends of cellulosic ethanol in China [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2541-2562. |
| [4] | QIAO Kai, ZHANG Zhenyu, MA Huixia, FU Jie, ZHOU Feng. Advances in key technologies and industrial development of bio-based furandicarboxylic acid [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2577-2586. |
| [5] | XU Zhenhao, YI Zixiao, ZENG Chen, WANG Yuchen, YAN Kai. Recent advance on the conversion and upgrading of biomass-derived platform molecules [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2642-2654. |
| [6] | FENG Jiao, LIU Mingming, LIU Yao, WANG Xin, CHEN Kequan. Research progress in the biosynthesis of aliphatic short-chain diamines and diols from renewable feedstocks [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2655-2666. |
| [7] | SUN Zhongshun, LIU Gen, CHENG Chunyu, LI Meixin, YANG Xiantan, WU Zhiqiang, YANG Bolun. Research progress on thermochemical conversion of biomass to green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2667-2682. |
| [8] | SU Qian, BAI Fan, LIU Zhenxing, LIU Zhang. Ultrasonic identification of gas-liquid two-phase flow patterns based on XGBoost [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1786-1793. |
| [9] | DAI Yueming, ZHOU Meifang, SHEN Jianhua, JIANG Haibo, LI Chunzhong. Molecular dynamics simulation of sintering mechanism of TiO2 nanoparticles [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2202-2214. |
| [10] | ZHOU Guoning, ZHU Haochen, HE Wenzhi, LI Guangming. Research progress on hydrothermal technology for agricultural waste treatment Ⅰ: Preparation of biocrude oil [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2297-2312. |
| [11] | ZHOU Guoning, ZHU Haochen, HE Wenzhi, LI Guangming. Research progress on hydrothermal technology for agricultural waste treatment Ⅱ: Hydrothermal carbonization [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2313-2327. |
| [12] | TAO Jinquan, JIA Yijing, BAI Tianyu, YAO Rongpeng, HUANG Wenbin, CUI Yan, ZHOU Yasong, WEI Qiang. Synthesis and catalytic MTP performance of Silicalite-1 zeolite with low cost [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1550-1558. |
| [13] | FENG Peng, XU Donghai, HE Bing, LIU Huanteng, YANG Lijie, WANG Pan, LIU Qingshan. Dissolution characteristics and mechanisms of typical sulphates Na2SO4 and K2SO4 in sub-/supercritical water [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1706-1715. |
| [14] | WANG Pengkun, CAI Wangfeng, YANG Chenyang, HUANG Li, WANG Yan. Separation of 1,4-butanediol mixtures containing acetal reaction by vacuum batch distillation [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1275-1284. |
| [15] | QIU Zegang, SHI Yafei, LI Zhiqin. Cleavage of C— O bonds in biomass-derived aromatic oxygenates [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1183-1193. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |