Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 2313-2327.DOI: 10.16085/j.issn.1000-6613.2024-0623
• Resources and environmental engineering • Previous Articles Next Articles
ZHOU Guoning(
), ZHU Haochen, HE Wenzhi, LI Guangming(
)
Received:2024-04-12
Revised:2024-07-20
Online:2025-05-07
Published:2025-04-25
Contact:
LI Guangming
通讯作者:
李光明
作者简介:周郭宁(2000—),女,硕士研究生,研究方向为固体废弃物资源化。E-mail:2331291@tongji.edu.cn。
基金资助:CLC Number:
ZHOU Guoning, ZHU Haochen, HE Wenzhi, LI Guangming. Research progress on hydrothermal technology for agricultural waste treatment Ⅱ: Hydrothermal carbonization[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2313-2327.
周郭宁, 朱昊辰, 贺文智, 李光明. 水热技术用于农业废弃物处理的研究进展Ⅱ:水热炭化[J]. 化工进展, 2025, 44(4): 2313-2327.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0623
| 转化技术类别 | 适用情形 | 相对优势 | 局限性 | |
|---|---|---|---|---|
| 热化学转化 | ①直接焚烧;②热解,包括慢速热解、常规热解、快速热解、闪速热解;③水热处理,包括水热炭化、水热液化、水热气化;④气化;⑤烘焙 | 纤维素、半纤维素占比大;水分含量高;碳氮比较小(<30) | 原料来源广,几乎所有类型生物质均适用;反应时间短,效率高;所需反应器尺寸小 | 能耗、物耗较大;需添加催化剂等化学试剂,带来污染排放问题 |
| 生物化学转化 | ①厌氧消化;②酶水解/糖发酵 | 木质素占比大;水分含量低;碳氮比较大(>30) | 能耗较低,绿色环保,环境友好 | 反应周期长,时间成本高;分解效率低,对木质素、纤维素的处理易不完全 |
| 转化技术类别 | 适用情形 | 相对优势 | 局限性 | |
|---|---|---|---|---|
| 热化学转化 | ①直接焚烧;②热解,包括慢速热解、常规热解、快速热解、闪速热解;③水热处理,包括水热炭化、水热液化、水热气化;④气化;⑤烘焙 | 纤维素、半纤维素占比大;水分含量高;碳氮比较小(<30) | 原料来源广,几乎所有类型生物质均适用;反应时间短,效率高;所需反应器尺寸小 | 能耗、物耗较大;需添加催化剂等化学试剂,带来污染排放问题 |
| 生物化学转化 | ①厌氧消化;②酶水解/糖发酵 | 木质素占比大;水分含量低;碳氮比较大(>30) | 能耗较低,绿色环保,环境友好 | 反应周期长,时间成本高;分解效率低,对木质素、纤维素的处理易不完全 |
| 水热处理技术 | 反应温度/℃ | 反应压力/MPa | 主要产物 |
|---|---|---|---|
| 水热炭化(HTC) | 180~250 | 2~10 | 水热炭 |
| 水热液化(HTL) | 250~370 | 5~35 | 生物原油 |
| 水热气化(HTG) | 370~750 | >22.1 | 低于600℃为CH4;高于600℃为H2 |
| 水热处理技术 | 反应温度/℃ | 反应压力/MPa | 主要产物 |
|---|---|---|---|
| 水热炭化(HTC) | 180~250 | 2~10 | 水热炭 |
| 水热液化(HTL) | 250~370 | 5~35 | 生物原油 |
| 水热气化(HTG) | 370~750 | >22.1 | 低于600℃为CH4;高于600℃为H2 |
| 1 | POTNURI Ramesh, SURYA Dadi Venkata, RAO Chinta Sankar, et al. A review on analysis of biochar produced from microwave-assisted pyrolysis of agricultural waste biomass[J]. Journal of Analytical and Applied Pyrolysis, 2023, 173: 106094. |
| 2 | RISEH Roohallah Saberi, VAZVANI Mozhgan Gholizadeh, HASSANISAADI Mohadeseh, et al. Agricultural wastes: A practical and potential source for the isolation and preparation of cellulose and application in agriculture and different industries[J]. Industrial Crops and Products, 2024, 208: 117904. |
| 3 | 董献彬. 农业有机废弃物资源化利用现状及展望研究[J]. 农村·农业·农民B, 2022(3): 37-38. |
| DONG Xianbin. Study on the current status and prospect of resource utilization of agricultural organic waste[J]. Rural Areas, Agriculture & Farmers(B), 2022(3): 37-38. | |
| 4 | DEBNATH Banhisikha, HALDAR Dibyajyoti, PURKAIT Mihir Kumar. A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues[J]. Carbohydrate Polymers, 2021, 273: 118537. |
| 5 | QI Jiamin, YANG Hua, WANG Xingyuan, et al. State-of-the-art on animal manure pollution control and resource utilization[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110462. |
| 6 | 徐长征. 农业有机废弃物资源化利用对环境保护的影响及策略研究[J]. 数字农业与智能农机, 2024(6): 58-60. |
| XU Changzheng. Study on the impact of resource utilization of agricultural organic waste on environmental protection and strategies[J]. Digital Agriculture and Intelligent Agricultural Machinery, 2024(6): 58-60. | |
| 7 | CONG Hongbin, MENG Haibo, CHEN Mingsong, et al. Co-processing paths of agricultural and rural solid wastes for a circular economy based on the construction concept of “zero-waste city” in China[J]. Circular Economy, 2023, 2(4): 100065. |
| 8 | TONG Colin. Introduction to materials for advanced energy systems[J]. MRS Bulletin, 2020, 45(4): 317. |
| 9 | GHIAT Ikhlas, MAHMOOD Farhat, GOVINDAN Rajesh, et al. CO2 utilisation in agricultural greenhouses: A novel ‘plant to plant’ approach driven by bioenergy with carbon capture systems within the energy, water and food nexus[J]. Energy Conversion and Management, 2021, 228: 113668. |
| 10 | LEE Kuanting, CHEN Wei-Hsin, SARLES Paul, et al. Recover energy and materials from agricultural waste via thermochemical conversion[J]. One Earth, 2022, 5(11): 1200-1204. |
| 11 | UDDIN Md Helal, HAQUE Md Minhaz-UI. Preparation and characterization of cellulose nanoparticles from agricultural wastes and their application in polymer composites[J]. Scholars International Journal of Chemistry and Material Sciences, 2023, 6(1): 18-23. |
| 12 | OSMAN Ahmed I, MEHTA Neha, ELGARAHY Ahmed M, et al. Conversion of biomass to biofuels and life cycle assessment: A review[J]. Environmental Chemistry Letters, 2021, 19(6): 4075-4118. |
| 13 | YANG Chuang, WANG Shuzhong, YANG Jianqiao, et al. Hydrothermal liquefaction and gasification of biomass and model compounds: A review[J]. Green Chemistry, 2020, 22(23): 8210-8232. |
| 14 | 阚玉娜, 陈冰炜, 翟胜丞, 等. 生物质水热碳化及其功能化应用研究进展[J]. 化工新型材料, 2021, 49(12): 43-49. |
| KAN Yuna, CHEN Bingwei, ZHAI Shengcheng, et al. Research progress on hydrothermal carbonization of biomass and its functional application[J]. New Chemical Materials, 2021, 49(12): 43-49. | |
| 15 | IGHALO Joshua O, RANGABHASHIYAM Selvasembian, DULTA Kanika, et al. Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants[J]. Chemical Engineering Research and Design, 2022, 184: 419-456. |
| 16 | Leena PAULINE A, JOSEPH Kurian. Hydrothermal carbonization of organic wastes to carbonaceous solid fuel—A review of mechanisms and process parameters[J]. Fuel, 2020, 279: 118472. |
| 17 | HEIDARI Mohammad, DUTTA Animesh, ACHARYA Bishnu, et al. A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion[J]. Journal of the Energy Institute, 2019, 92(6): 1779-1799. |
| 18 | Daniel LACHOS-PEREZ, BULLER Luz S, SGANZERLA William G, et al. Sequential hydrothermal process for production of flavanones and sugars from orange peel: An economic assessment[J]. Biofuels, Bioproducts and Biorefining, 2021, 15(1): 202-217. |
| 19 | LI Jingjing, DOU Binlin, ZHANG Hua, et al. Pyrolysis characteristics and non-isothermal kinetics of waste wood biomass[J]. Energy, 2021, 226: 120358. |
| 20 | SHENG Kuichuan, ZHANG Shen, LIU Jianglong, et al. Hydrothermal carbonization of cellulose and xylan into hydrochars and application on glucose isomerization[J]. Journal of Cleaner Production, 2019, 237: 117831. |
| 21 | VOLPE Maurizio, MESSINEO Antonio, Mikko MÄKELÄ, et al. Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass[J]. Fuel Processing Technology, 2020, 206: 106456. |
| 22 | FUNKE Axel, ZIEGLER Felix. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering[J]. Biofuels, Bioproducts and Biorefining, 2010, 4(2): 160-177. |
| 23 | Daniel LACHOS-PEREZ, CÉSAR TORRES-MAYANGA Paulo, ABAIDE Ederson R, et al. Hydrothermal carbonization and liquefaction: Differences, progress, challenges, and opportunities[J]. Bioresource Technology, 2022, 343: 126084. |
| 24 | Judith GONZÁLEZ-ARIAS, SÁNCHEZ Marta E, Jorge CARA-JIMÉNEZ, et al. Hydrothermal carbonization of biomass and waste: A review[J]. Environmental Chemistry Letters, 2022, 20(1): 211-221. |
| 25 | 宋子菡, 刘永林, 刘琳, 等. 水热炭在吸附有机/无机污染物中的应用研究进展[J]. 水处理技术, 2024, 50(1): 13-19. |
| SONG Zihan, LIU Yonglin, LIU Lin, et al. Research progress of application of hydrothermal carbon in organic/inorganic pollutants[J]. Technology of Water Treatment, 2024, 50(1): 13-19. | |
| 26 | URBANOWSKA Agnieszka, Małgorzata KABSCH-KORBUTOWICZ, WNUKOWSKI Mateusz, et al. Treatment of liquid by-products of hydrothermal carbonization (HTC) of agricultural digestate using membrane separation[J]. Energies, 2020, 13(1): 262. |
| 27 | WANG Heming, LUO Haiping, FALLGREN Paul H, et al. Bioelectrochemical system platform for sustainable environmental remediation and energy generation[J]. Biotechnology Advances, 2015, 33(3/4): 317-334. |
| 28 | SHEN Ruixia, LU Jianwen, ZHU Zhangbing, et al. Effects of organic strength on performance of microbial electrolysis cell fed with hydrothermal liquefied wastewater[J]. International Journal of Agricultural and Biological Engineering, 2017(3): 206-217. |
| 29 | SHEN Ruixia, LIU Zhidan, HE Yanhong, et al. Microbial electrolysis cell to treat hydrothermal liquefied wastewater from cornstalk and recover hydrogen: Degradation of organic compounds and characterization of microbial community[J]. International Journal of Hydrogen Energy, 2016, 41(7): 4132-4142. |
| 30 | USMAN Muhammad, CHEN Huihui, CHEN Kaifei, et al. Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production: A review[J]. Green Chemistry, 2019, 21(7): 1553-1572. |
| 31 | KAMBO Harpreet Singh, DUTTA Animesh. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 359-378. |
| 32 | 孔玲瑶, 白莉, 迟铭书, 等. 工艺水循环对玉米秸秆水热碳化影响的实验研究[J]. 吉林建筑大学学报, 2022, 39(2): 23-28. |
| KONG Lingyao, BAI Li, CHI Mingshu, et al. Experimental study on effect of process water cycle on hydrothermal carbonization of corn straw[J]. Journal of Jilin Jianzhu University, 2022, 39(2): 23-28. | |
| 33 | LANG Qianqian, LUO Hainan, LI Yi, et al. Thermal behavior of hydrochar from co-hydrothermal carbonization of swine manure and sawdust: Effect of process water recirculation[J]. Sustainable Energy & Fuels, 2019, 3(9): 2329-2336. |
| 34 | HEIDARI Mohammad, SALAUDEEN Shakirudeen, DUTTA Animesh, et al. Effects of process water recycling and particle sizes on hydrothermal carbonization of biomass[J]. Energy & Fuels, 2018, 32(11): 11576-11586. |
| 35 | CAVALI Matheus, LIBARDI Nelson, DE SENA Julia Dutra, et al. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process[J]. Science of the Total Environment, 2023, 857: 159627. |
| 36 | AFOLABI Oluwasola O D, SOHAIL M, CHENG Yuling. Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation[J]. Renewable Energy, 2020, 147: 1380-1391. |
| 37 | 俞盈, 韩兰芳, 姜晓满. 水热炭的制备、结构特征和应用[J]. 环境化学, 2018, 37(6): 1232-1244. |
| YU Ying, HAN Lanfang, JIANG Xiaoman. Production, properties and environmental application of hydrochar[J]. Environmental Chemistry, 2018, 37(6): 1232-1244. | |
| 38 | SUN Xiao, ATIYEH Hasan K, LI Mengxing, et al. Biochar facilitated bioprocessing and biorefinery for productions of biofuel and chemicals: A review[J]. Bioresource Technology, 2020, 295: 122252. |
| 39 | WANG Duo, JIANG Peikun, ZHANG Haibo, et al. Biochar production and applications in agro and forestry systems: A review[J]. Science of the Total Environment, 2020, 723: 137775. |
| 40 | 韩晨, 侯朋福, 薛利红, 等. 麦秸水热炭及其改良产物对水稻产量和稻田氨挥发排放的影响[J]. 环境科学, 2021, 42(7): 3451-3457. |
| HAN Chen, HOU Pengfu, XUE Lihong, et al. Effects of wheat straw hydrochar and its modified product on rice yield and ammonia volatilization from paddy fields[J]. Environmental Science, 2021, 42(7): 3451-3457. | |
| 41 | BARGMANN I, RILLIG Matthias C, BUSS Wolfram, et al. Hydrochar and biochar effects on germination of spring barley[J]. Journal of Agronomy and Crop Science, 2013, 199(5): 360-373. |
| 42 | FERNANDEZ M E, LEDESMA B, ROMÁN S, et al. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants[J]. Bioresource Technology, 2015, 183: 221-228. |
| 43 | ZHOU Nan, CHEN Honggang, XI Junting, et al. Biochars with excellent Pb(Ⅱ) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization[J]. Bioresource Technology, 2017, 232: 204-210. |
| 44 | SRINIVASAN Rajkumar, ELAIYAPPILLAI Elanthamilan, PANDIAN Hepsiba Paul, et al. Sustainable porous activated carbon from Polyalthia longifolia seeds as electrode material for supercapacitor application[J]. Journal of Electroanalytical Chemistry, 2019, 849: 113382. |
| 45 | FANG June, GAO Bin, ZIMMERMAN Andrew R, et al. Physically (CO2) activated hydrochars from hickory and peanut hull: Preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium[J]. RSC Advances, 2016, 6(30): 24906-24911. |
| 46 | SUN Kejing, TANG Jingchun, GONG Yanyan, et al. Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water[J]. Environmental Science and Pollution Research International, 2015, 22(21): 16640-16651. |
| 47 | GHANIM Bashir, LEAHY James J, OʼDWYER Thomas F, et al. Removal of hexavalent chromium [Cr(Ⅵ)] from aqueous solution using acid-modified poultry litter-derived hydrochar: Adsorption, regeneration and reuse[J]. Journal of Chemical Technology & Biotechnology, 2022, 97(1): 55-66. |
| 48 | NGUYEN Duy H, TRAN Hai Nguyen, CHAO Huanping, et al. Effect of nitric acid oxidation on the surface of hydrochars to sorb methylene blue: An adsorption mechanism comparison[J]. Adsorption Science & Technology, 2019, 37(7/8): 607-622. |
| 49 | ISLAM Md Azharul, TAN Ivy Ai Wei, BENHOURIA Assia, et al. Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation[J]. Chemical Engineering Journal, 2015, 270: 187-195. |
| 50 | XUE Yingwen, GAO Bin, YAO Ying, et al. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests[J]. Chemical Engineering Journal, 2012, 200: 673-680. |
| 51 | KHATAEE Alireza, KAYAN Berkant, KALDERIS Dimitrios, et al. Ultrasound-assisted removal of Acid Red 17 using nanosized Fe3O4-loaded coffee waste hydrochar[J]. Ultrasonics Sonochemistry, 2017, 35: 72-80. |
| 52 | ZAHEDIFAR Mahboobeh, SEYEDI Neda, SHAFIEI Saeid, et al. Surface-modified magnetic biochar: Highly efficient adsorbents for removal of Pb(Ⅱ) and Cd(Ⅱ)[J]. Materials Chemistry and Physics, 2021, 271: 124860. |
| 53 | RATTANACHUESKUL Natthanan, SANING Amonrada, KAOWPHONG Sulawan, et al. Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline, prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process[J]. Bioresource Technology, 2017, 226: 164-172. |
| 54 | QU Jianhua, SHI Shuai, LI Yuhui, et al. Fe/N co-doped magnetic porous hydrochar for chromium(Ⅵ) removal in water: Adsorption performance and mechanism investigation[J]. Bioresource Technology, 2024, 394: 130273. |
| 55 | 李振亮, 杜佳, 杨华, 等. 功能化水热碳的制备及对水中Cu2+的吸附性能研究[J]. 广州化工, 2021, 49(19): 75-77. |
| LI Zhenliang, DU Jia, YANG Hua, et al. Preparation of functional hydrothermal carbon and adsorption of Cu2+ in water[J]. Guangzhou Chemical Industry, 2021, 49(19): 75-77. | |
| 56 | TANG Zhi, DENG Yuanfang, LUO Tao, et al. Enhanced removal of Pb(Ⅱ) by supported nanoscale Ni/Fe on hydrochar derived from biogas residues[J]. Chemical Engineering Journal, 2016, 292: 224-232. |
| 57 | 赵婷婷, 刘杰, 刘茜茜, 等. KMnO4存在下利用水热法由牛粪制备水热炭及其吸附Pb(Ⅱ)性能[J]. 环境化学, 2016, 35(12): 2535-2542. |
| ZHAO Tingting, LIU Jie, LIU Xixi, et al. Hydrothermal synthesis of dairy manure hydrochar in the medium of KMnO4 solution and its adsorption properties for Pb(Ⅱ)[J]. Environmental Chemistry, 2016, 35(12): 2535-2542. | |
| 58 | ANASTOPOULOS Ioannis, IGHALO Joshua O, ADAOBI IGWEGBE Chinenye, et al. Sunflower-biomass derived adsorbents for toxic/heavy metals removal from (waste) water[J]. Journal of Molecular Liquids, 2021, 342: 117540. |
| 59 | HAN Lanfang, SUN Haoran, Kyoung S RO, et al. Removal of antimony (Ⅲ) and cadmium (Ⅱ) from aqueous solution using animal manure-derived hydrochars and pyrochars[J]. Bioresource Technology, 2017, 234: 77-85. |
| 60 | DAI Lichun, WU Bo, TAN Furong, et al. Engineered hydrochar composites for phosphorus removal/recovery: Lanthanum doped hydrochar prepared by hydrothermal carbonization of lanthanum pretreated rice straw[J]. Bioresource Technology, 2014, 161: 327-332. |
| 61 | SHUANG E, WANG Qiong, SHENG Kuichuan, et al. Synthesis of Al-modified hydrochar from corn stover for efficient phosphate removal[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111725. |
| 62 | JIANG Yanhong, LI Anyu, DENG Hua, et al. Phosphate adsorption from wastewater using ZnAl-LDO-loaded modified banana straw biochar[J]. Environmental Science and Pollution Research International, 2019, 26(18): 18343-18353. |
| 63 | ABUBAKAR Abdurrahman, BATAGARAWA Samaila Muazu. Kinetic and isotherm studies of malachite green and Congo red adsorption from aqueous solution by corn stalk bio-waste material[J]. Bayero Journal of Pure and Applied Sciences, 2018, 10(1): 350. |
| 64 | Ahmed Fate ALI, KOVO Abdulsalami Sanni, ADETUNJI Sunday Adesola. Methylene blue and brilliant green dyes removal from aqueous solution using agricultural wastes activated carbon[J]. Journal of Encapsulation and Adsorption Sciences, 2017, 7(2): 95-107. |
| 65 | WU Jia, YANG Jianwei, FENG Pu, et al. High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar[J]. Chemosphere, 2020, 246: 125734. |
| 66 | RONIX Amanda, PEZOTI Osvaldo, SOUZA Lucas S, et al. Hydrothermal carbonization of coffee husk: Optimization of experimental parameters and adsorption of methylene blue dye[J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 4841-4849. |
| 67 | TRAN Hai Nguyen, YOU Shengjie, CHAO Huanping. Insight into adsorption mechanism of cationic dye onto agricultural residues-derived hydrochars: Negligible role of π-π interaction[J]. Korean Journal of Chemical Engineering, 2017, 34(6): 1708-1720. |
| 68 | 杨正武, 安天一, 李雨泽, 等. 原位改性丙酮水热炭对四环素的吸附特性[J]. 山东化工, 2021, 50(14): 10-12. |
| YANG Zhengwu, AN Tianyi, LI Yuze, et al. Adsorption characteristics of tetracycline by in-situ modified acetone hydrochar[J]. Shandong Chemical Industry, 2021, 50(14): 10-12. | |
| 69 | ZHENG Zhihong, ZHAO Baolong, GUO Yiping, et al. Preparation of mesoporous batatas biochar via soft-template method for high efficiency removal of tetracycline[J]. Science of the Total Environment, 2021, 787: 147397. |
| 70 | CHENG Long, JI Yuanhui, SHAO Qing. Facile modification of hydrochar derived from cotton straw with excellent sorption performance for antibiotics: Coupling DFT simulations with experiments[J]. Science of the Total Environment, 2021, 760: 144124. |
| 71 | 周蒙蒙, 张忠庆, 赵庆慧, 等. 玉米秸秆水热炭制备及其对水中阿特拉津吸附[J]. 吉林大学学报(理学版), 2021, 59(4): 993-1002. |
| ZHOU Mengmeng, ZHANG Zhongqing, ZHAO Qinghui, et al. Preparation of hydrothermal carbon of cornstalks and its adsorption of atrazine in water[J]. Journal of Jilin University (Science Edition), 2021, 59(4): 993-1002. | |
| 72 | 段佳男, 叶志伟, 王曦, 等. 改性稻壳水热炭对苯酚的吸附[J]. 应用化工, 2022, 51(1): 17-21. |
| DUAN Jianan, YE Zhiwei, WANG Xi, et al. Adsorption of phenol by modified rice husk hydrochar[J]. Applied Chemical Industry, 2022, 51(1): 17-21. | |
| 73 | MA Xiancheng, WU Yi, FANG Muaoer, et al. In-situ activated ultramicroporous carbon materials derived from waste biomass for CO2 capture and benzene adsorption[J]. Biomass and Bioenergy, 2022, 158: 106353. |
| 74 | CHUNG Jae W, FOPPEN Jan W, IZQUIERDO Marta, et al. Removal of Escherichia coli from saturated sand columns supplemented with hydrochar produced from maize[J]. Journal of Environmental Quality, 2014, 43(6): 2096-2103. |
| 75 | CHUNG Jae Wook, BREULMANN M, CLEMENS A, et al. Simultaneous removal of rotavirus and adenovirus from artificial ground water using hydrochar derived from swine feces[J]. Journal of Water and Health, 2016, 14(5): 754-767. |
| 76 | DING Shudong, WANG Bingyu, FENG Yuanyuan, et al. Livestock manure-derived hydrochar improved rice paddy soil nutrients as a cleaner soil conditioner in contrast to raw material[J]. Journal of Cleaner Production, 2022, 372: 133798. |
| 77 | SCHEIFELE Michael, HOBI Andrea, BUEGGER Franz, et al. Impact of pyrochar and hydrochar on soybean (Glycine max L.) root nodulation and biological nitrogen fixation[J]. Journal of Plant Nutrition and Soil Science, 2017, 180(2): 199-211. |
| 78 | LI Xianyue, WANG Rongchen, SHAO Chenyang, et al. Biochar and hydrochar from agricultural residues for soil conditioning: Life cycle assessment and microbially mediated C and N cycles[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(11): 3574-3583. |
| 79 | PUCCINI Monica, CECCARINI Lucia, ANTICHI Daniele, et al. Hydrothermal carbonization of municipal woody and herbaceous prunings: Hydrochar valorisation as soil amendment and growth medium for horticulture[J]. Sustainability, 2018, 10(3): 846. |
| 80 | ALMEIDA MELO Camila, JUNIOR Francisco Holanda Soares, BISINOTI Marcia Cristina, et al. Transforming sugarcane bagasse and vinasse wastes into hydrochar in the presence of phosphoric acid: An evaluation of nutrient contents and structural properties[J]. Waste and Biomass Valorization, 2017, 8(4): 1139-1151. |
| 81 | WAN Stefan, WANG Shengsen, LI Yuncong, et al. Functionalizing biochar with Mg-Al and Mg-Fe layered double hydroxides for removal of phosphate from aqueous solutions[J]. Journal of Industrial and Engineering Chemistry, 2017, 47: 246-253. |
| 82 | VOZHDAYEV Georgiy V, SPOKAS Kurt A, MOLDE Joseph S, et al. Response of maize germination and growth to hydrothermal carbonization filtrate type and amount[J]. Plant and Soil, 2015, 396(1): 127-136. |
| 83 | FORNES Fernando, BELDA Rosa M, FERNÁNDEZ DE CÓRDOVA Pascual, et al. Assessment of biochar and hydrochar as minor to major constituents of growing media for containerized tomato production[J]. Journal of the Science of Food and Agriculture, 2017, 97(11): 3675-3684. |
| 84 | ABEL Stefan, PETERS Andre, TRINKS Steffen, et al. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil[J]. Geoderma, 2013, 202: 183-191. |
| 85 | LIU Zuolin, DUGAN Brandon, MASIELLO Caroline A, et al. Biochar particle size, shape, and porosity act together to influence soil water properties[J]. PLoS One, 2017, 12(6): e0179079. |
| 86 | YANG Wei, WANG Hui, ZHANG Meng, et al. Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo[J]. Bioresource Technology, 2016, 205: 199-204. |
| 87 | DING Lili, WANG Zichen, LI Yannan, et al. A novel hydrochar and nickel composite for the electrochemical supercapacitor electrode material[J]. Materials Letters, 2012, 74: 111-114. |
| 88 | LIU Zhengang, QUEK Augustine, BALASUBRAMANIAN Rajasekhar. Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars[J]. Applied Energy, 2014, 113: 1315-1322. |
| 89 | AHMAD RATHER Mushtaq, KHAN Noor Salam, GUPTA Rajat. Hydrothermal carbonization of macrophyte Potamogeton lucens for solid biofuel production production of solid biofuel from macrophyte Potamogeton lucens [J]. Engineering Science and Technology, an International Journal, 2017, 20(1): 168-174. |
| 90 | YANG Jiantao, ZHANG Zhiming, WANG Junyao, et al. Pyrolysis and hydrothermal carbonization of biowaste: A comparative review on the conversion pathways and potential applications of char product[J]. Sustainable Chemistry and Pharmacy, 2023, 33: 101106. |
| 91 | LU Xiangjun, JIANG Chunhai, HU Yangling, et al. Preparation of hierarchically porous carbon spheres by hydrothermal carbonization process for high-performance electrochemical capacitors[J]. Journal of Applied Electrochemistry, 2018, 48(2): 233-241. |
| 92 | KURNIAWAN Fredi, WONGSO Michael, AYUCITRA Aning, et al. Carbon microsphere from water hyacinth for supercapacitor electrode[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 47: 197-201. |
| 93 | LIU Dongdong, WANG Yiting, JIA Boyin, et al. Microwave-assisted hydrothermal preparation of corn straw hydrochar as supercapacitor electrode materials[J]. ACS Omega, 2020, 5(40): 26084-26093. |
| 94 | Natalia REY-RAAP, Marina ENTERRÍA, MARTINS José Inácio, et al. Influence of multiwalled carbon nanotubes as additives in biomass-derived carbons for supercapacitor applications[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6066-6077. |
| 95 | FERRERO Guillermo Álvarez, FUERTES Antonio B, SEVILLA Marta. From soybean residue to advanced supercapacitors[J]. Scientific Reports, 2015, 5: 16618. |
| 96 | ZHAO Yunpeng, XU Rongxia, CAO Jingpei, et al. N/O co-doped interlinked porous carbon nanoflakes derived from soybean stalk for high-performance supercapacitors[J]. Journal of Electroanalytical Chemistry, 2020, 871: 114288. |
| 97 | Judith GONZÁLEZ-ARIAS, BAENA-MORENO Francisco M, SÁNCHEZ Marta E, et al. Optimizing hydrothermal carbonization of olive tree pruning: A techno-economic analysis based on experimental results[J]. Science of the Total Environment, 2021, 784: 147169. |
| 98 | MADHURA Lavanya, KANCHI Suvardhan, SABELA Myalowenkosi I, et al. Membrane technology for water purification[J]. Environmental Chemistry Letters, 2018, 16(2): 343-365. |
| 99 | BORRERO-LÓPEZ A M, MASSON Eric, CELZARD Alain, et al. Modelling the reactions of cellulose, hemicellulose and lignin submitted to hydrothermal treatment[J]. Industrial Crops and Products, 2018, 124: 919-930. |
| 100 | Fan LYU, HUA Zhang, SHAO Liming, et al. Loop bioenergy production and carbon sequestration of polymeric waste by integrating biochemical and thermochemical conversion processes: A conceptual framework and recent advances[J]. Renewable Energy, 2018, 124: 202-211. |
| 101 | ZOU Jintuo, LIU Xiangmeng, XU Sunqiang, et al. Combined hydrothermal pretreatment of agricultural and forestry wastes to enhance anaerobic digestion for methane production[J]. Chemical Engineering Journal, 2024, 486: 150313. |
| [1] | ZHOU Guoning, ZHU Haochen, HE Wenzhi, LI Guangming. Research progress on hydrothermal technology for agricultural waste treatment Ⅰ: Preparation of biocrude oil [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2297-2312. |
| [2] | QIU Zegang, SHI Yafei, LI Zhiqin. Cleavage of C— O bonds in biomass-derived aromatic oxygenates [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1183-1193. |
| [3] | LIAO Xu, WANG Wei, HUANG Wenting, XIONG Wentao, WANG Zeyu, QIN Zuodong, LIN Jinqing. Research progress in biomass-based catalysts in the conversion of carbon dioxide into cyclic carbonates [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 834-846. |
| [4] | QI Shuaijie, HUANG Yaji, XU Pengcheng, QI Jingwei, LI Zhiyuan, SHI Hao, ZHAO Jiaqi, GAO Jiawei, LIU Jun, ZHANG Yuyao. Pyrolysis of waste wood building formwork and typical biomass: comparison of product distribution and properties [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1120-1128. |
| [5] | SONG Shunming, ZHANG Jingwen, ZHANG Liangqing, QIU Jiarong, CHEN Jianfeng, ZENG Xianhai. Catalytic transformation of biomass-derived polyols to diols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 228-252. |
| [6] | HE Shikun, ZHANG Ronghua, LI Haoyang, PAN Hui, FENG Junfeng. Preparation of 5-hydroxymethylfurfural from glucose catalyzed by dealuminized molecular sieve solid acids [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 374-381. |
| [7] | HU Tingxia, ZHAO Lixin, YAO Zonglu, HUO Lili, JIA Jixiu, XIE Teng. Research progress of bimetallic catalysts in catalytic steam reforming of biomass tar [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4354-4365. |
| [8] | SHI Jiabo, ZHANG Yuxuan, CHEN Xuefeng, TAN Jiaojun. Preparation and oil-water separation property of tannic acid-nanoclay synergistically modified collagen fiber-based porous materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4624-4629. |
| [9] | ZHANG Zihang, WANG Shurong. Research advances in biomass pyrolysis conversion and low-carbon utilization of products [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3692-3708. |
| [10] | WANG Yingjie, ZHU Xinli. Highly dispersed Ni-Cu/SiO2 synthesized by sol-gel method for prompting direct deoxygenation of m-cresol to toluene [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3824-3833. |
| [11] | ZHAO Weigang, ZHANG Qianqian, LAN Yuling, YAN Wen, ZHOU Xiaojian, FAN Mizi, DU Guanben. Research progress and prospect of the core materials for vacuum insulation panel [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3910-3922. |
| [12] | JIANG Huizhen, LUO Kai, WANG Yan, FEI Hua, WU Dengke, YE Zhuocheng, CAO Xiongjin. Construction and application of waste biomass composite phase change materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3934-3945. |
| [13] | YAN Zhe, LIU Chang, WANG Fengxu, ZHOU Hongwang, LIU Xi, ZHAO Xuebing. Electrochemical reduction of CO2 coupled with oxidative conversion of biomass [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3310-3321. |
| [14] | XIE Guoping, TAN Xuesong, LIU Peng, MIAO Changlin, XU Guangwen, ZHUANG Xinshu. Research progress of lignocellulosic pretreatment based on bio-based derived organic solvents [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3347-3358. |
| [15] | HE Shikun, ZHANG Wenhao, FENG Junfeng, PAN Hui. Directional conversion of lignocellulosic biomass to methyl levulinate over supported metal solid acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3042-3050. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |