Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 2297-2312.DOI: 10.16085/j.issn.1000-6613.2024-0622
• Resources and environmental engineering • Previous Articles Next Articles
ZHOU Guoning(
), ZHU Haochen, HE Wenzhi, LI Guangming(
)
Received:2024-04-12
Revised:2024-08-05
Online:2025-05-07
Published:2025-04-25
Contact:
LI Guangming
通讯作者:
李光明
作者简介:周郭宁(2000—),女,硕士研究生,研究方向为固体废弃物资源化。E-mail:2331291@tongji.edu.cn。
基金资助:CLC Number:
ZHOU Guoning, ZHU Haochen, HE Wenzhi, LI Guangming. Research progress on hydrothermal technology for agricultural waste treatment Ⅰ: Preparation of biocrude oil[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2297-2312.
周郭宁, 朱昊辰, 贺文智, 李光明. 水热技术用于农业废弃物处理的研究进展Ⅰ:生物原油制备[J]. 化工进展, 2025, 44(4): 2297-2312.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0622
| 种类 | 纤维素/% | 半纤维素/% | 木质素/% |
|---|---|---|---|
| 小麦秸秆[ | 39.20 | 25.60 | 22.90 |
| 甘蔗渣[ | 39.00 | 24.90 | 23.10 |
| 大麦秸秆[ | 46.00 | 23.00 | 15.00 |
| 稻草秸秆[ | 46.33 | 31.09 | 10.17 |
| 花生秸秆[ | 36.56 | 20.27 | 18.36 |
| 玉米秸秆[ | 30.81 | 25.52 | 16.76 |
| 大豆秸秆[ | 42.39 | 22.05 | 18.93 |
| 橘子皮[ | 12.00 | 14.50 | 2.20 |
| 香蕉皮[ | 11.50 | 25.50 | 9.80 |
| 种类 | 纤维素/% | 半纤维素/% | 木质素/% |
|---|---|---|---|
| 小麦秸秆[ | 39.20 | 25.60 | 22.90 |
| 甘蔗渣[ | 39.00 | 24.90 | 23.10 |
| 大麦秸秆[ | 46.00 | 23.00 | 15.00 |
| 稻草秸秆[ | 46.33 | 31.09 | 10.17 |
| 花生秸秆[ | 36.56 | 20.27 | 18.36 |
| 玉米秸秆[ | 30.81 | 25.52 | 16.76 |
| 大豆秸秆[ | 42.39 | 22.05 | 18.93 |
| 橘子皮[ | 12.00 | 14.50 | 2.20 |
| 香蕉皮[ | 11.50 | 25.50 | 9.80 |
| 国家 | 生物质 | 年产量/t | 产品 |
|---|---|---|---|
| 巴西 | 甘蔗 | 746828157 | 生物乙醇、生物柴油 |
| 印度 尼西亚 | 甘蔗 | 21744000 | 生物气体(沼气)、生物炭、 生物柴油 |
| 喀麦隆 | 玉米 | 332534 | 生物炭、合成气 |
| 柬埔寨 | 玉米 | 10647212 | 生物炭、生物油、合成气 |
| 越南 | 玉米 | 44046250 | 生物炭、生物油、生物气体(沼气) |
| 马来西亚 | 油棕果 | 98419400 | 生物油、生物气体(沼气)、生物炭 |
| 泰国 | 油棕果 | 15400000 | 生物油、合成气 |
| 刚果(金) | 原木 | 4612010 | 生物炭 |
| 尼日利亚 | 原木 | 10032000 | 生物气体(沼气)、生物炭 |
| 澳大利亚 | 原木 | 11618525 | 生物气体(沼气)、生物炭 |
| 国家 | 生物质 | 年产量/t | 产品 |
|---|---|---|---|
| 巴西 | 甘蔗 | 746828157 | 生物乙醇、生物柴油 |
| 印度 尼西亚 | 甘蔗 | 21744000 | 生物气体(沼气)、生物炭、 生物柴油 |
| 喀麦隆 | 玉米 | 332534 | 生物炭、合成气 |
| 柬埔寨 | 玉米 | 10647212 | 生物炭、生物油、合成气 |
| 越南 | 玉米 | 44046250 | 生物炭、生物油、生物气体(沼气) |
| 马来西亚 | 油棕果 | 98419400 | 生物油、生物气体(沼气)、生物炭 |
| 泰国 | 油棕果 | 15400000 | 生物油、合成气 |
| 刚果(金) | 原木 | 4612010 | 生物炭 |
| 尼日利亚 | 原木 | 10032000 | 生物气体(沼气)、生物炭 |
| 澳大利亚 | 原木 | 11618525 | 生物气体(沼气)、生物炭 |
| 80 | YADAV Priyanka, REDDY Sivamohan N. Hydrothermal liquefaction of Fe-impregnated water hyacinth for generation of liquid bio-fuels and nano Fe carbon hybrids[J]. Bioresource Technology, 2020, 313: 123691. |
| 81 | DURAK Halil, GENEL Salih. Catalytic hydrothermal liquefaction of lactuca scariola with a heterogeneous catalyst: The investigation of temperature, reaction time and synergistic effect of catalysts[J]. Bioresource Technology, 2020, 309: 123375. |
| 82 | SHI W, LI S, JIN H, et al. The hydrothermal liquefaction of rice husk to bio-crude using metallic oxide catalysts[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2013, 35(22): 2149-2155. |
| 83 | See Cheng YIM, QUITAIN Armando T, YUSUP Suzana, et al. Metal oxide-catalyzed hydrothermal liquefaction of Malaysian oil palm biomass to bio-oil under supercritical condition[J]. The Journal of Supercritical Fluids, 2017, 120: 384-394. |
| 84 | CHEN Dongdong, MA Quanhong, WEI Lingfei, et al. Catalytic hydroliquefaction of rice straw for bio-oil production using Ni/CeO2 catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 169-180. |
| 85 | CHENG Shouyun, WEI Lin, ZHAO Xianhui, et al. Application, deactivation, and regeneration of heterogeneous catalysts in bio-oil upgrading[J]. Catalysts, 2016, 6(12): 195. |
| 86 | YAN Xiuyi, MA Jiuli, WANG Wei, et al. The effect of different catalysts and process parameters on the chemical content of bio-oils from hydrothermal liquefaction of sugarcane bagasse[J]. BioResources, 2018, 13(1): 997-1018. |
| 87 | FENG Li, LI Xuhao, WANG Zizeng, et al. Catalytic hydrothermal liquefaction of lignin for production of aromatic hydrocarbon over metal supported mesoporous catalyst[J]. Bioresource Technology, 2021, 323: 124569. |
| 88 | JIA Pengfei, WANG Juan, ZHANG Weiliang. Catalytic hydrothermal liquefaction of lignin over carbon nanotube supported metal catalysts for production of monomeric phenols[J]. Journal of the Energy Institute, 2021, 94: 1-10. |
| 89 | CAO Maoqi, LONG Chengmei, SUN Sailan, et al. Catalytic hydrothermal liquefaction of peanut shell for the production aromatic rich monomer compounds[J]. Journal of the Energy Institute, 2021, 96: 90-96. |
| 90 | HAGEN Jens. Catalyst shapes and production of heterogeneous catalysts[M]//Industrial Catalysis: A Practical Approach. Hoboke: Wiley, 2015: 211-238. |
| 91 | LEE Ming-Jer, WU Hsien-Tsung, LIN Ho-Mu. Kinetics of catalytic esterification of acetic acid and amyl alcohol over dowex[J]. Industrial & Engineering Chemistry Research, 2000, 39(11): 4094-4099. |
| 1 | POTNURI Ramesh, SURYA Dadi Venkata, RAO Chinta Sankar, et al. A review on analysis of biochar produced from microwave-assisted pyrolysis of agricultural waste biomass[J]. Journal of Analytical and Applied Pyrolysis, 2023, 173: 106094. |
| 2 | 石惠娴, 沈昊文, 潘方慧, 等. 农业废弃物资源化梯次利用低碳模式研究[J]. 安徽农业科学, 2023, 51(3): 209-212, 252. |
| SHI Huixian, SHEN Haowen, PAN Fanghui, et al. Study on low carbon mode of agricultural waste recycling utilization[J]. Journal of Anhui Agricultural Sciences, 2023, 51(3): 209-212, 252. | |
| 3 | 宋刘洋, 丁舒心, 张琪, 等. 农业废弃物资源化利用研究进展[J]. 青海农林科技, 2024(1): 42-46. |
| SONG Liuyang, DING Shuxin, ZHANG Qi, et al. Research progress on the resource utilization of agricultural waste[J]. Science and Technology of Qinghai Agriculture and Forestry, 2024(1): 42-46. | |
| 4 | KOUL Bhupendra, YAKOOB Mohammad, SHAH Maulin P. Agricultural waste management strategies for environmental sustainability[J]. Environmental Research, 2022, 206: 112285. |
| 5 | BRACCO Stefania, CALICIOGLU Ozgul, GOMEZ SAN JUAN Marta, et al. Assessing the contribution of bioeconomy to the total economy: A review of national frameworks[J]. Sustainability, 2018, 10(6): 1698. |
| 6 | GHIAT Ikhlas, MAHMOOD Farhat, GOVINDAN Rajesh, et al. CO2 utilisation in agricultural greenhouses: A novel ‘plant to plant’ approach driven by bioenergy with carbon capture systems within the energy, water and food nexus[J]. Energy Conversion and Management, 2021, 228: 113668. |
| 7 | PERIYASAMY Selvakumar, BEULA ISABEL J, KAVITHA S, et al. Recent advances in consolidated bioprocessing for conversion of lignocellulosic biomass into bioethanol—A review[J]. Chemical Engineering Journal, 2023, 453: 139783. |
| 8 | RASPOLLI GALLETTI Anna Maria, ANTONETTI Claudia, DE LUISE Valentina, et al. Levulinic acid production from waste biomass[J]. BioResources, 2012, 7(2): 1824-1835. |
| 9 | RAINA Neelu, SLATHIA Parvez Singh, SHARMA Preeti. Response surface methodology (RSM) for optimization of thermochemical pretreatment method and enzymatic hydrolysis of deodar sawdust (DS) for bioethanol production using separate hydrolysis and co-fermentation (SHCF)[J]. Biomass Conversion and Biorefinery, 2022, 12(11): 5175-5195. |
| 10 | ZHU Zhe, ROSENDAHL Lasse, TOOR Saqib Sohail, et al. Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation[J]. Applied Energy, 2015, 137: 183-192. |
| 92 | CHEN Yongxing, DUAN Peigao, DONG Lin, et al. The study of hydrothermal liquefaction of corn straw with nano ferrite + inorganic base catalyst system at low temperature[J]. Bioresource Technology, 2021, 333: 125185. |
| 93 | KUMAR Mayank, OLAJIRE OYEDUN Adetoyese, KUMAR Amit. A review on the current status of various hydrothermal technologies on biomass feedstock[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1742-1770. |
| 94 | GAO Yan, LIU Songfeng, DU Jianwei, et al. Conversion and extracting bio-oils from rod-shaped cornstalk by sub-critical water[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 316-325. |
| 95 | SINGH Rawel, CHAUDHARY Kajal, BISWAS Bijoy, et al. Hydrothermal liquefaction of rice straw: Effect of reaction environment[J]. The Journal of Supercritical Fluids, 2015, 104: 70-75. |
| 96 | DURAK Halil, AYSU Tevfik. Structural analysis of bio-oils from subcritical and supercritical hydrothermal liquefaction of Datura stramonium L[J]. The Journal of Supercritical Fluids, 2016, 108: 123-135. |
| 97 | YIN Sudong, DOLAN Ryan, HARRIS Matt, et al. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil[J]. Bioresource Technology, 2010, 101(10): 3657-3664. |
| 98 | EL-RUB Z ABU, BRAMER E A, BREM G. Review of catalysts for tar elimination in biomass gasification processes[J]. Industrial & Engineering Chemistry Research, 2004, 43(22): 6911-6919. |
| 99 | SUGANO Motoyuki, TAKAGI Hirokazu, HIRANO Katsumi, et al. Hydrothermal liquefaction of plantation biomass with two kinds of wastewater from paper industry[J]. Journal of Materials Science, 2008, 43(7): 2476-2486. |
| 100 | MATHANKER Ankit, PUDASAINEE Deepak, KUMAR Amit, et al. Hydrothermal liquefaction of lignocellulosic biomass feedstock to produce biofuels: Parametric study and products characterization[J]. Fuel, 2020, 271: 117534. |
| 101 | SASAKI Mitsuru, ADSCHIRI Tadafumi, ARAI Kunio. Production of cellulose Ⅱ from native cellulose by near- and supercritical water solubilization[J]. Journal of Agricultural and Food Chemistry, 2003, 51(18): 5376-5381. |
| 102 | AKHTAR Javaid, AMIN Nor Aishah Saidina. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1615-1624. |
| 103 | LIU Huamin, LI Mingfei, SUN Runcang. Hydrothermal liquefaction of cornstalk: 7-Lump distribution and characterization of products[J]. Bioresource Technology, 2013, 128: 58-64. |
| 11 | TIAN Ye, WANG Feng, DJANDJA Jesuis Oraléou, et al. Hydrothermal liquefaction of crop straws: Effect of feedstock composition[J]. Fuel, 2020, 265: 116946. |
| 12 | SÁNCHEZ OROZCO Raymundo, BALDERAS HERNÁNDEZ Patricia, MORALES Gabriela ROA, et al. Characterization of lignocellulosic fruit waste as an alternative feedstock for bioethanol production[J]. BioResources, 2014, 9(2): 1873-1885. |
| 13 | ATES Burhan, KOYTEPE Suleyman, Ahmet ULU, et al. Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources[J]. Chemical Reviews, 2020, 120(17): 9304-9362. |
| 14 | PERIYASAMY Selvakumar, ASEFA ADEGO Adane, Senthil KUMAR P, et al. Influencing factors and environmental feasibility analysis of agricultural waste preprocessing routes towards biofuel production—A review[J]. Biomass and Bioenergy, 2024, 180: 107001. |
| 15 | Huei Yeong LIM, YUSUP Suzana, Adrian Chun Minh LOY, et al. Review on conversion of lignin waste into value-added resources in tropical countries[J]. Waste and Biomass Valorization, 2021, 12(10): 5285-5302. |
| 16 | OLATUNJI Obafemi, AKINLABI Stephen, OLUSEYI Ajayi, et al. Experimental investigation of thermal properties of lignocellulosic biomass: A review[J]. IOP Conference Series: Materials Science and Engineering, 2018, 413: 012054. |
| 17 | VARJANI Sunita, SHAHBEIG Hossein, POPAT Kartik, et al. Sustainable management of municipal solid waste through waste-to-energy technologies[J]. Bioresource Technology, 2022, 355: 127247. |
| 18 | QUERESHI Shireen, JADHAO Prashant Ram, PANDEY Ashish, et al. Overview of sustainable fuel and energy technologies[M]//Sustainable Fuel Technologies Handbook. Amsterdam: Elsevier, 2021: 3-25. |
| 19 | ZHANG Laibao, BAO Zhenghong, XIA Shunxiang, et al. Catalytic pyrolysis of biomass and polymer wastes[J]. Catalysts, 2018, 8(12): 659. |
| 20 | Hafiz UDDIN M, Minhaz HAQUE M. Preparation and characterization of cellulose nanoparticles from agricultural wastes and their application in polymer composites[J]. Scholars International Journal of Chemistry and Material Sciences, 2023, 6(1): 18-23. |
| 21 | OSMAN Ahmed I, MEHTA Neha, ELGARAHY Ahmed M, et al. Conversion of biomass to biofuels and life cycle assessment: A review[J]. Environmental Chemistry Letters, 2021, 19(6): 4075-4118. |
| 22 | PISHVAEE Mir Saman, MOHSENI Shayan, BAIRAMZADEH Samira. Tactical planning in biofuel supply chain under uncertainty[M]//Biomass to Biofuel Supply Chain Design and Planning under Uncertainty. Amsterdam: Elsevier, 2021: 213-245. |
| 104 | 王刚, 张嘉琪, 朱哲, 等. 水热液化玉米秸秆制备生物油实验及动力学研究[J]. 山东农业大学学报(自然科学版), 2021, 52(4): 697-703. |
| WANG Gang, ZHANG Jiaqi, ZHU Zhe, et al. Experimental study on the preparation of bio-oil from corn straw by hydrothermal liquefaction and kinetics[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2021, 52(4): 697-703. | |
| 105 | LI Rundong, XIE Yinghui, YANG Tianhua, et al. Characteristics of the products of hydrothermal liquefaction combined with cellulosic bio-ethanol process[J]. Energy, 2016, 114: 862-867. |
| 106 | Selhan KARAGÖZ, BHASKAR Thallada, MUTO Akinori, et al. Low-temperature hydrothermal treatment of biomass: Effect of reaction parameters on products and boiling point distributions[J]. Energy & Fuels, 2004, 18(1): 234-241. |
| 107 | CHEMAT Farid, VIAN Maryline Abert, RAVI Harish Karthikeyan, et al. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects[J]. Molecules, 2019, 24(16): 3007. |
| 108 | ZHAO Bojun, WANG Haoyu, XU Sida, et al. Influence of extraction solvents on the recovery yields and properties of bio-oils from woody biomass liquefaction in sub-critical water, ethanol or water-ethanol mixed solvent[J]. Fuel, 2022, 307: 121930. |
| 109 | MONTESANTOS Nikolaos, MASCHIETTI Marco. Supercritical carbon dioxide extraction of lignocellulosic bio-oils: The potential of fuel upgrading and chemical recovery[J]. Energies, 2020, 13(7): 1600. |
| 110 | WANG Hongqi, GUNAWAN Richard, WANG Zhitao, et al. High-pressure reactive distillation of bio-oil for reduced polymerisation[J]. Fuel Processing Technology, 2021, 211: 106590. |
| 111 | MAHROUS Engy A, FARAG Mohamed A. Trends and applications of molecular distillation in pharmaceutical and food industries[J]. Separation & Purification Reviews, 2022, 51(3): 300-317. |
| 112 | 赵福田. 秸秆生物油组分分离及其改质升级[D]. 焦作: 河南理工大学, 2022. |
| ZHAO Futian. Separation and upgrading of bio-oil components from straw[D]. Jiaozuo: Henan Polytechnic University, 2022. | |
| 113 | 邱祖民, 刘传福, 吴正德, 等. 分子蒸馏技术在高沸点热敏性油脂分离中的应用进展[J]. 南昌大学学报(工科版), 2023, 45(2): 136-143. |
| 23 | PAUL Subhash, DUTTA Animesh. Challenges and opportunities of lignocellulosic biomass for anaerobic digestion[J]. Resources, Conservation and Recycling, 2018, 130: 164-174. |
| 24 | SINGH Rawel, KRISHNA Bhavya B, MISHRA Garima, et al. Strategies for selection of thermo-chemical processes for the valorisation of biomass[J]. Renewable Energy, 2016, 98: 226-237. |
| 25 | IGHALO Joshua O, CONRADIE Jeanet, OHORO Chinemerem R, et al. Biochar from coconut residues: An overview of production, properties, and applications[J]. Industrial Crops and Products, 2023, 204: 117300. |
| 26 | 张林野, 吉帝安, 马志鹏, 等. 生物质水热液化研究现状与展望[J]. 当代化工研究, 2022(20): 10-13. |
| ZHANG Linye, JI Dian, MA Zhipeng, et al. Research status and prospect of biomass hydrothermal liquefaction[J]. Modern Chemical Research, 2022(20): 10-13. | |
| 27 | LIU Zhengang, BALASUBRAMANIAN Rajasekhar. Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): A comparative evaluation[J]. Applied Energy, 2014, 114: 857-864. |
| 28 | ELLIOTT D C, SCHIEFELBEIN G F. Liquid hydrocarbon fuels from biomass[J]. American Chemical Society, Division of Fuel Chemistry, 1989, 34(4): 1160-1166. |
| 29 | LEMOINE F, MAUPIN Irène, Laurent LEMÉE, et al. Alternative fuel production by catalytic hydroliquefaction of solid municipal wastes, primary sludges and microalgae[J]. Bioresource Technology, 2013, 142: 1-8. |
| 30 | GUO Kang, GUAN Qiyuan, XU Junming, et al. Mechanism of preparation of platform compounds from lignocellulosic biomass liquefaction catalyzed by bronsted acid: A review[J]. Journal of Bioresources and Bioproducts, 2019, 4(4): 202-213. |
| 31 | CHAN Yi Herng, TAN Raymond R, YUSUP Suzana, et al. Comparative life cycle assessment (LCA) of bio-oil production from fast pyrolysis and hydrothermal liquefaction of oil palm empty fruit bunch (EFB)[J]. Clean Technologies and Environmental Policy, 2016, 18(6): 1759-1768. |
| 32 | ALHAZMI Hatem, Adrian Chun Minh LOY. A review on environmental assessment of conversion of agriculture waste to bio-energy via different thermochemical routes: Current and future trends[J]. Bioresource Technology Reports, 2021, 14: 100682. |
| 33 | CAO Leichang, ZHANG Cheng, CHEN Huihui, et al. Hydrothermal liquefaction of agricultural and forestry wastes: State-of-the-art review and future prospects[J]. Bioresource Technology, 2017, 245: 1184-1193. |
| 113 | QIU Zumin, LIU Chuanfu, WU Zhengde, et al. Application progress of the molecular distillation technology in the separation of thermal-sensitive materials with high boiling point[J]. Journal of Nanchang University (Engineering & Technology), 2023, 45(2): 136-143. |
| 34 | 申瑞霞, 赵立欣, 冯晶, 等. 生物质水热液化产物特性与利用研究进展[J]. 农业工程学报, 2020, 36(2): 266-274. |
| SHEN Ruixia, ZHAO Lixin, FENG Jing, et al. Research progress on characteristics and utilization of products from hydrothermal liquefaction of biomass[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 266-274. | |
| 35 | XU Zhixiang, CHENG Jinhong, HE Zhixia, et al. Hydrothermal liquefaction of cellulose in ammonia/water[J]. Bioresource Technology, 2019, 278: 311-317. |
| 36 | GOLLAKOTA Anjani Ravi Kiran, KISHORE Nanda, GU Sai. A review on hydrothermal liquefaction of biomass[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1378-1392. |
| 37 | CHEAH Wai Yan, SANKARAN Revathy, SHOW Pau Loke, et al. Pretreatment methods for lignocellulosic biofuels production: Current advances, challenges and future prospects[J]. Biofuel Research Journal, 2020, 7(1): 1115-1127. |
| 38 | 张洪伟, 张顺元, 张克江. 生物质水热液化研究进展[J]. 生物质化学工程, 2024, 58(1): 67-76. |
| ZHANG Hongwei, ZHANG Shunyuan, ZHANG Kejiang. Research progress in biomass hydrothermal liquefaction[J]. Biomass Chemical Engineering, 2024, 58(1): 67-76. | |
| 39 | COUTO FRAGA Adriano DO, DE ALMEIDA Marlon Brando Bezerra, SOUSA-AGUIAR Eduardo Falabella. Hydrothermal liquefaction of cellulose and lignin: A new approach on the investigation of chemical reaction networks[J]. Cellulose, 2021, 28(4): 2003-2020. |
| 40 | Maria MÖLLER, Uwe SCHRÖDER. Hydrothermal production of furfural from xylose and xylan as model compounds for hemicelluloses[J]. RSC Advances, 2013, 3(44): 22253-22260. |
| 41 | DE LA CONCEPCIÓN Juan García, Fernando MARTÍNEZ R, CINTAS Pedro, et al. Mutarotation of aldoses: Getting a deeper knowledge of a classic equilibrium enabled by computational analyses[J]. Carbohydrate Research, 2020, 490: 107964. |
| 42 | PHAIBOONSILPA Natthanon, CHAMPREDA Verawat, LAOSIRIPOJANA Navadol. Comparative study on liquefaction behaviors of xylan hemicellulose as treated by different hydrothermal methods[J]. Energy Reports, 2020, 6: 714-718. |
| 43 | CAO Yang, CHEN Season S, ZHANG Shicheng, et al. Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery[J]. Bioresource Technology, 2019, 291: 121878. |
| 44 | 程琴, 午紫阳, 马艳, 等. 木质纤维水热液化研究进展[J]. 生物质化学工程, 2023, 57(1): 84-98. |
| CHENG Qin, WU Ziyang, MA Yan, et al. Research progress on hydrothermal liquefaction of lignocellulosic fiber[J]. Biomass Chemical Engineering, 2023, 57(1): 84-98. | |
| 45 | KANG Shimin, LI Xianglan, FAN Juan, et al. Classified separation of lignin hydrothermal liquefied products[J]. Industrial & Engineering Chemistry Research, 2011, 50(19): 11288-11296. |
| 46 | ZOU Shuping, WU Yulong, YANG Mingde, et al. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake[J]. Energy, 2010, 35(12): 5406-5411. |
| 47 | YAN Weihong, DUAN Peigao, WANG Feng, et al. Composition of the bio-oil from the hydrothermal liquefaction of duckweed and the influence of the extraction solvents[J]. Fuel, 2016, 185: 229-235. |
| 48 | LI Hugang, LU Jianwen, ZHANG Yuanhui, et al. Hydrothermal liquefaction of typical livestock manures in China: Biocrude oil production and migration of heavy metals[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 133-140. |
| 49 | Daniel LACHOS-PEREZ, CÉSAR TORRES-MAYANGA Paulo, ABAIDE Ederson R, et al. Hydrothermal carbonization and liquefaction: Differences, progress, challenges, and opportunities[J]. Bioresource Technology, 2022, 343: 126084. |
| 50 | KASHIMALLA Monika, SURABOYINA Sharanya, DUBBAKA Vidya, et al. Optimisation of a catalytic hydrothermal liquefaction process using central composite design for yield improvement of bio-oil[J]. Biomass Conversion and Biorefinery, 2023, 13: 3751-3763. |
| 51 | HOFFMANN Jessica, JENSEN Claus Uhrenholt, ROSENDAHL Lasse Aistrup. Co-processing potential of HTL bio-crude at petroleum refineries—Part 1: Fractional distillation and characterization[J]. Fuel, 2016, 165: 526-535. |
| 52 | CHENG Dan, WANG Lijun, SHAHBAZI Abolghasem, et al. Characterization of the physical and chemical properties of the distillate fractions of crude bio-oil produced by the glycerol-assisted liquefaction of swine manure[J]. Fuel, 2014, 130: 251-256. |
| 53 | Bahar MERYEMOĞLU, Arif HASANOĞLU, IRMAK Sibel, et al. Biofuel production by liquefaction of kenaf (Hibiscus cannabinus L.) biomass[J]. Bioresource Technology, 2014, 151: 278-283. |
| 54 | CHAN Yi Herng, YUSUP Suzana, QUITAIN Armando T, et al. Effect of process parameters on hydrothermal liquefaction of oil palm biomass for bio-oil production and its life cycle assessment[J]. Energy Conversion and Management, 2015, 104: 180-188. |
| 55 | FENG Shanghuan, YUAN Zhongshun, LEITCH Matthew, et al. Hydrothermal liquefaction of barks into bio-crude—Effects of species and ash content/composition[J]. Fuel, 2014, 116: 214-220. |
| 56 | ARUN Jayaseelan, GOPINATH Kannappan Panchamoorthy, SIVARAMAKRISHNAN Ramachandran, et al. Technical insights into the production of green fuel from CO2 sequestered algal biomass: A conceptual review on green energy[J]. Science of the Total Environment, 2021, 755: 142636. |
| 57 | MAHIMA Jain, SUNDARESH Ramesh Kumar, GOPINATH Kannappan Panchamoorthy, et al. Effect of algae (Scenedesmus obliquus) biomass pre-treatment on bio-oil production in hydrothermal liquefaction (HTL): Biochar and aqueous phase utilization studies[J]. Science of the Total Environment, 2021, 778: 146262. |
| 58 | YANG Jie, CHEN Hao, LIU Qi, et al. Is it feasible to replace freshwater by seawater in hydrothermal liquefaction of biomass for biocrude production?[J]. Fuel, 2020, 282: 118870. |
| 59 | BISWAS Bijoy, ARUN KUMAR Aishwarya, BISHT Yashasvi, et al. Role of temperatures and solvents on hydrothermal liquefaction of Azolla filiculoides [J]. Energy, 2021, 217: 119330. |
| 60 | WANG Xin, XIE Xinan, SUN Jiao, et al. Effects of liquefaction parameters of cellulose in supercritical solvents of methanol, ethanol and acetone on products yield and compositions[J]. Bioresource Technology, 2019, 275: 123-129. |
| 61 | DING Yongjie, SHAN Bailin, CAO Xuejuan, et al. Development of bio oil and bio asphalt by hydrothermal liquefaction using lignocellulose[J]. Journal of Cleaner Production, 2021, 288: 125586. |
| 62 | LI Zhixia, CAO Jiangfei, HUANG Kai, et al. Alkaline pretreatment and the synergic effect of water and tetralin enhances the liquefaction efficiency of bagasse[J]. Bioresource Technology, 2015, 177: 159-168. |
| 63 | ZHOU Xinxing, ZHAO Jun, CHEN Meizhu, et al. Influence of catalyst and solvent on the hydrothermal liquefaction of woody biomass[J]. Bioresource Technology, 2022, 346: 126354. |
| 64 | ZHAO Bojun, LI Haoyang, WANG Haoyu, et al. Synergistic effects of metallic Fe and other homogeneous/heterogeneous catalysts in hydrothermal liquefaction of woody biomass[J]. Renewable Energy, 2021, 176: 543-554. |
| 65 | SCARSELLA Marco, DE CAPRARIIS Benedetta, DAMIZIA Martina, et al. Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: A review[J]. Biomass and Bioenergy, 2020, 140: 105662. |
| 66 | JIANG Jianchun, XU Junming, SONG Zhanqian. Review of the direct thermochemical conversion of lignocellulosic biomass for liquid fuels[J]. Frontiers of Agricultural Science and Engineering, 2015, 2(1): 13. |
| 67 | HWANG Hyewon, LEE Jae Hoon, CHOI In-Gyu, et al. Comprehensive characterization of hydrothermal liquefaction products obtained from woody biomass under various alkali catalyst concentrations[J]. Environmental Technology, 2019, 40(13): 1657-1667. |
| 68 | HE Qing, DING Lu, GONG Yan, et al. Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis[J]. Bioresource Technology, 2019, 280: 104-111. |
| 69 | SAINI Dinesh Kumar, Amit RAI, DEVI Alka, et al. A multi-objective hybrid machine learning approach-based optimization for enhanced biomass and bioactive phycobiliproteins production in Nostoc sp. CCC-403[J]. Bioresource Technology, 2021, 329: 124908. |
| 70 | ZHU Zhe, TOOR Saqib Sohail, ROSENDAHL Lasse, et al. Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw[J]. Energy, 2015, 80: 284-292. |
| 71 | KAUR Ravneet, BISWAS Bijoy, KUMAR Jitendra, et al. Catalytic hydrothermal liquefaction of castor residue to bio-oil: Effect of alkali catalysts and optimization study[J]. Industrial Crops and Products, 2020, 149: 112359. |
| 72 | SINGH Rawel, BALAGURUMURTHY Bhavya, PRAKASH Aditya, et al. Catalytic hydrothermal liquefaction of water hyacinth[J]. Bioresource Technology, 2015, 178: 157-165. |
| 73 | KIM Seong Ju, Byung Hwan UM. Biocrude production from Korean native kenaf through subcritical hydrothermal liquefaction under mild alkaline catalytic conditions[J]. Industrial Crops and Products, 2020, 145: 112001. |
| 74 | BALLERINI Daniel. Biofuels: Meeting the energy and environmental challenges of the transportation sector[M]. Editions Technip, 2012. |
| 75 | 丁文冉, 李欢, 赵保峰, 等. 农林废弃物生物质水热液化研究探讨[J]. 现代化工, 2021, 41(10): 23-27. |
| DING Wenran, LI Huan, ZHAO Baofeng, et al. Review on hydrothermal liquefaction of agricultural and forestry waste biomass[J]. Modern Chemical Industry, 2021, 41(10): 23-27. | |
| 76 | NAZARI Laleh, YUAN Zhongshun, SOUZANCHI Sadra, et al. Hydrothermal liquefaction of woody biomass in hot-compressed water: Catalyst screening and comprehensive characterization of bio-crude oils[J]. Fuel, 2015, 162: 74-83. |
| 77 | ELKHALIFA Elwathig A, FRIEDRICH Holger B. Magnesium oxide as a catalyst for the dehydrogenation of n-octane[J]. Arabian Journal of Chemistry, 2018, 11(7): 1154-1159. |
| 78 | LONG Jinxing, LI Yingwen, ZHANG Xiong, et al. Comparative investigation on hydrothermal and alkali catalytic liquefaction of bagasse: Process efficiency and product properties[J]. Fuel, 2016, 186: 685-693. |
| 79 | ZHAO Bojun, HU Yulin, QI Liying, et al. Promotion effects of metallic iron on hydrothermal liquefaction of cornstalk in ethanol-water mixed solvents for the production of biocrude oil[J]. Fuel, 2021, 285: 119150. |
| [1] | ZHOU Guoning, ZHU Haochen, HE Wenzhi, LI Guangming. Research progress on hydrothermal technology for agricultural waste treatment Ⅱ: Hydrothermal carbonization [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2313-2327. |
| [2] | QIU Zegang, SHI Yafei, LI Zhiqin. Cleavage of C— O bonds in biomass-derived aromatic oxygenates [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1183-1193. |
| [3] | QI Shuaijie, HUANG Yaji, XU Pengcheng, QI Jingwei, LI Zhiyuan, SHI Hao, ZHAO Jiaqi, GAO Jiawei, LIU Jun, ZHANG Yuyao. Pyrolysis of waste wood building formwork and typical biomass: comparison of product distribution and properties [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1120-1128. |
| [4] | LIAO Xu, WANG Wei, HUANG Wenting, XIONG Wentao, WANG Zeyu, QIN Zuodong, LIN Jinqing. Research progress in biomass-based catalysts in the conversion of carbon dioxide into cyclic carbonates [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 834-846. |
| [5] | SONG Shunming, ZHANG Jingwen, ZHANG Liangqing, QIU Jiarong, CHEN Jianfeng, ZENG Xianhai. Catalytic transformation of biomass-derived polyols to diols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 228-252. |
| [6] | HE Shikun, ZHANG Ronghua, LI Haoyang, PAN Hui, FENG Junfeng. Preparation of 5-hydroxymethylfurfural from glucose catalyzed by dealuminized molecular sieve solid acids [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 374-381. |
| [7] | HU Tingxia, ZHAO Lixin, YAO Zonglu, HUO Lili, JIA Jixiu, XIE Teng. Research progress of bimetallic catalysts in catalytic steam reforming of biomass tar [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4354-4365. |
| [8] | SHI Jiabo, ZHANG Yuxuan, CHEN Xuefeng, TAN Jiaojun. Preparation and oil-water separation property of tannic acid-nanoclay synergistically modified collagen fiber-based porous materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4624-4629. |
| [9] | ZHANG Zihang, WANG Shurong. Research advances in biomass pyrolysis conversion and low-carbon utilization of products [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3692-3708. |
| [10] | WANG Yingjie, ZHU Xinli. Highly dispersed Ni-Cu/SiO2 synthesized by sol-gel method for prompting direct deoxygenation of m-cresol to toluene [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3824-3833. |
| [11] | ZHAO Weigang, ZHANG Qianqian, LAN Yuling, YAN Wen, ZHOU Xiaojian, FAN Mizi, DU Guanben. Research progress and prospect of the core materials for vacuum insulation panel [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3910-3922. |
| [12] | JIANG Huizhen, LUO Kai, WANG Yan, FEI Hua, WU Dengke, YE Zhuocheng, CAO Xiongjin. Construction and application of waste biomass composite phase change materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3934-3945. |
| [13] | YAN Zhe, LIU Chang, WANG Fengxu, ZHOU Hongwang, LIU Xi, ZHAO Xuebing. Electrochemical reduction of CO2 coupled with oxidative conversion of biomass [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3310-3321. |
| [14] | XIE Guoping, TAN Xuesong, LIU Peng, MIAO Changlin, XU Guangwen, ZHUANG Xinshu. Research progress of lignocellulosic pretreatment based on bio-based derived organic solvents [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3347-3358. |
| [15] | HE Shikun, ZHANG Wenhao, FENG Junfeng, PAN Hui. Directional conversion of lignocellulosic biomass to methyl levulinate over supported metal solid acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3042-3050. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |