Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (3): 1285-1297.DOI: 10.16085/j.issn.1000-6613.2024-0439
• Energy processes and technology • Previous Articles Next Articles
CHENG Chonglyu1(
), SHAN Conghui1, ZHANG Mengfan1, WEN X Jennifer2, XU Baopeng1(
)
Received:2024-03-18
Revised:2024-04-02
Online:2025-04-16
Published:2025-03-25
Contact:
XU Baopeng
程崇律1(
), 单聪慧1, 张孟凡1, WEN X Jennifer2, 徐宝鹏1(
)
通讯作者:
徐宝鹏
作者简介:程崇律(1996—),男,博士研究生,研究方向为能源安全、火灾模拟。E-mail:ccl9611@mail.dlut.edu.cn。
基金资助:CLC Number:
CHENG Chonglyu, SHAN Conghui, ZHANG Mengfan, WEN X Jennifer, XU Baopeng. Research progress of hydrogen safety modeling[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1285-1297.
程崇律, 单聪慧, 张孟凡, WEN X Jennifer, 徐宝鹏. 氢安全建模研究进展[J]. 化工进展, 2025, 44(3): 1285-1297.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0439
| 属性 | 氢气 | 甲烷 | 丙烷 |
|---|---|---|---|
| 气体密度/kg·m-3 | 0.0838 | 0.651 | 1.87 |
| 能量密度/MJ·kg-1 | 119.96 | 50.07 | 50.30 |
| 沸点/℃ | -253 | -162 | -42 |
| 引燃温度/℃ | 585 | 650 | 460 |
| 扩散系数/cm2·s-1 | 1.29 | 0.16 | 0.10 |
| 最小点火能量/mJ | 0.017 | 0.31 | 0.28 |
| 燃烧极限(体积分数)/% | 4~75 | 5.3~17 | 1.7~10.9 |
| 爆炸极限(体积分数)/% | 18~59 | 6.5~12 | 2.6~7.4 |
| 燃烧速率/m·s-1 | 2.65 | 0.38 | 0.15 |
| 属性 | 氢气 | 甲烷 | 丙烷 |
|---|---|---|---|
| 气体密度/kg·m-3 | 0.0838 | 0.651 | 1.87 |
| 能量密度/MJ·kg-1 | 119.96 | 50.07 | 50.30 |
| 沸点/℃ | -253 | -162 | -42 |
| 引燃温度/℃ | 585 | 650 | 460 |
| 扩散系数/cm2·s-1 | 1.29 | 0.16 | 0.10 |
| 最小点火能量/mJ | 0.017 | 0.31 | 0.28 |
| 燃烧极限(体积分数)/% | 4~75 | 5.3~17 | 1.7~10.9 |
| 爆炸极限(体积分数)/% | 18~59 | 6.5~12 | 2.6~7.4 |
| 燃烧速率/m·s-1 | 2.65 | 0.38 | 0.15 |
| 方法 | 守恒情况 | 状态方程 |
|---|---|---|
| Birch(1984) | 质量守恒 | 理想气体 |
| Birch(1987) | 质量、动量守恒 | 理想气体 |
| Ewan | 质量守恒 | 理想气体 |
| Schefer | 质量、动量守恒 | 真实气体 |
| Yüceil | 质量、动量、能量守恒 | 理想气体 |
| Molkov | 质量、能量守恒 | 理想气体 |
| Harstad | 质量、动量、能量守恒 | 理想气体 |
| 方法 | 守恒情况 | 状态方程 |
|---|---|---|
| Birch(1984) | 质量守恒 | 理想气体 |
| Birch(1987) | 质量、动量守恒 | 理想气体 |
| Ewan | 质量守恒 | 理想气体 |
| Schefer | 质量、动量守恒 | 真实气体 |
| Yüceil | 质量、动量、能量守恒 | 理想气体 |
| Molkov | 质量、能量守恒 | 理想气体 |
| Harstad | 质量、动量、能量守恒 | 理想气体 |
| 1 | 李星国, 郑捷, 郭妍如, 等. 氢与氢能[M]. 2版. 北京: 科学出版社, 2022: 758-780. |
| LI Xingguo, ZHENG Jie, GUO Yanru, et al. Hydrogen and hydrogen energy[M]. 2nd ed. Beijing: Science Press, 2022: 758-780. | |
| 2 | LI Xuefang, CHEN Qi, CHEN Mingjia, et al. Modeling of underexpanded hydrogen jets through square and rectangular slot nozzles[J]. International Journal of Hydrogen Energy, 2019, 44(12): 6353-6365. |
| 3 | LI Xuefang, CHRISTOPHER David M, HECHT Ethan S, et al. Comparison of two-layer model for hydrogen and helium jets with notional nozzle model predictions and experimental data for pressures up to 35MPa[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7457-7466. |
| 4 | TIAN Ying, QIN Chuan, YANG Zirong, et al. Numerical simulation study on the leakage and diffusion characteristics of high-pressure hydrogen gas in different spatial scenes[J]. International Journal of Hydrogen Energy, 2024, 50: 1335-1349. |
| 5 | SCHEFER R W, HOUF W G, WILLIAMS T C. Investigation of small-scale unintended releases of hydrogen: Momentum-dominated regime[J]. International Journal of Hydrogen Energy, 2008, 33(21): 6373-6384. |
| 6 | SCHEFER R W, HOUF W G, WILLIAMS T C. Investigation of small-scale unintended releases of hydrogen: Buoyancy effects[J]. International Journal of Hydrogen Energy, 2008, 33(17): 4702-4712. |
| 7 | EL-AMIN M F, INOUE M, KANAYAMA H. Boundary layer theory approach to the concentration layer adjacent to a ceiling wall of a hydrogen leakage: Far region[J]. International Journal of Hydrogen Energy, 2008, 33(24): 7642-7647. |
| 8 | SHU Zhiyong, LIANG Wenqing, ZHENG Xiaohong, et al. Dispersion characteristics of hydrogen leakage: Comparing the prediction model with the experiment[J]. Energy, 2021, 236: 121420. |
| 9 | CUI Weiyi, YUAN Yupeng, TONG Liang, et al. Numerical simulation of hydrogen leakage diffusion in seaport hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2023, 48(63): 24521-24535. |
| 10 | LI Yongjun, WANG Zhirong, SHANG Zheng. Analysis and prediction of hydrogen-blended natural gas diffusion from various pipeline leakage sources based on CFD and ANN approach[J]. International Journal of Hydrogen Energy, 2024, 53: 535-549. |
| 11 | HE Xu, KONG Depeng, YU Xirui, et al. Prediction model for the evolution of hydrogen concentration under leakage in hydrogen refueling station using deep neural networks[J]. International Journal of Hydrogen Energy, 2024, 51: 702-712. |
| 12 | HAJJI Yassine, JOUINI Belgacem, BOUTERAA Mourad, et al. Numerical study of hydrogen release accidents in a residential garage[J]. International Journal of Hydrogen Energy, 2015, 40(31): 9747-9759. |
| 13 | WANG Fangnian, XIAO Jianjun, KUZNETSOV Mike, et al. Deterministic risk assessment of hydrogen leak from a fuel cell truck in a real-scale hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2024, 50: 1103-1118. |
| 14 | CUI Shaoqi, ZHU Guoqing, HE Lu, et al. Analysis of the fire hazard and leakage explosion simulation of hydrogen fuel cell vehicles[J]. Thermal Science and Engineering Progress, 2023, 41: 101754. |
| 15 | SHAO Xiangyu, YANG Shenyin, YUAN Yongliang, et al. Study on the difference of dispersion behavior between hydrogen and methane in utility tunnel[J]. International Journal of Hydrogen Energy, 2022, 47(12): 8130-8144. |
| 16 | PRABHAKAR Aneesh, AGRAWAL Nilesh, RAGHAVAN Vasudevan, et al. Numerical modelling of isothermal release and distribution of helium and hydrogen gases inside the AIHMS cylindrical enclosure[J]. International Journal of Hydrogen Energy, 2017, 42(22): 15435-15447. |
| 17 | YANG Nannan, DENG Jun, WANG Caiping, et al. High pressure hydrogen leakage diffusion: Research progress[J]. International Journal of Hydrogen Energy, 2024, 50: 1029-1046. |
| 18 | DE STEFANO M, ROCOURT X, SOCHET I, et al. Hydrogen dispersion in a closed environment[J]. International Journal of Hydrogen Energy, 2019, 44(17): 9031-9040. |
| 19 | LI Yongjun, WANG Zhirong, SHI Xuemeng, et al. Numerical investigation of the dispersion features of hydrogen gas under various leakage source conditions in a mobile hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2023, 48(25): 9498-9511. |
| 20 | AFGHAN HAJI ABBAS Mohammad, KHERADMAND Saeid, SADOUGHIPOUR Hossein. Numerical study of the effect of hydrogen leakage position and direction on hydrogen distribution in a closed enclosure[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23872-23881. |
| 21 | HUANG Teng, ZHAO Mingbin, BA Qingxin, et al. Modeling of hydrogen dispersion from hydrogen fuel cell vehicles in an underground parking garage[J]. International Journal of Hydrogen Energy, 2022, 47(1): 686-696. |
| 22 | SHENTSOV V, CIRRONE D, MAKAROV D. Effect of TPRD diameter and direction of release on hydrogen dispersion and jet fires in underground parking[J]. Journal of Energy Storage, 2023, 68: 107771. |
| 23 | Dorota BRZEZIŃSKA. Hydrogen dispersion phenomenon in nominally closed spaces[J]. International Journal of Hydrogen Energy, 2021, 46(55): 28358-28365. |
| 24 | OLVERA Héctor A, CHOUDHURI Ahsan R. Numerical simulation of hydrogen dispersion in the vicinity of a cubical building in stable stratified atmospheres[J]. International Journal of Hydrogen Energy, 2006, 31(15): 2356-2369. |
| 25 | MUKAI Shinji, SUZUKI Jinji, MITSUISHI Hiroyuki, et al. CFD simulation of diffusion of hydrogen leakage caused by fuel cell vehicle accident in tunnel, underground parking lot and multistory parking garage[C]//19th International Technical Conference on the Enhanced Safety of Vehicles. Washington: U.S. Department of Transportation, 2005: 9. |
| 26 | KANG Yong, MA Shuye, SONG Bingxue, et al. Simulation of hydrogen leakage diffusion behavior in confined space[J]. International Journal of Hydrogen Energy, 2024, 53: 75-85. |
| 27 | LIU Yanlei, ZHENG Jinyang, XU Ping, et al. Numerical simulation on the diffusion of hydrogen due to high pressured storage tanks failure[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 265-270. |
| 28 | XIE Lin, RONG Yangyiming, CHEN Jianye, et al. Impacts of wind conditions on hydrogen leakage during refilling hydrogen-powered vehicles[J]. Energy Storage and Saving, 2023, 2(2): 449-458. |
| 29 | ZHANG Xiaolu, WANG Qiubo, HOU Xulei, et al. Effect of the position and the area of the vent on the hydrogen dispersion in a naturally ventilated cubiod space with one vent on the side wall[J]. International Journal of Hydrogen Energy, 2022, 47(14): 9071-9081. |
| 30 | HAJJI Yassine, BOUTERAA Mourad, ELCAFSI Afif, et al. Green hydrogen leaking accidentally from a motor vehicle in confined space: A study on the effectiveness of a ventilation system[J]. International Journal of Energy Research, 2021, 45(13): 18935-18943. |
| 31 | GIANNISSI S G, SHENTSOV V, MELIDEO D, et al. CFD benchmark on hydrogen release and dispersion in confined, naturally ventilated space with one vent[J]. International Journal of Hydrogen Energy, 2015, 40(5): 2415-2429. |
| 32 | LI Xiaojuan, XU Yixiang, LI Xiang, et al. Effect of wind condition on unintended hydrogen release in a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5537-5547. |
| 33 | XU Baopeng, JALLAIS S, HOUSSIN D, et al. Numerical simulations of atmospheric dispersion of large-scale liquid hydrogen releases[C]//International Conference on Hydrogen Safety. Belgium: HySafe, 2021: 12. |
| 34 | VERFONDERN K, DIENHART B. Pool spreading and vaporization of liquid hydrogen[J]. International Journal of Hydrogen Energy, 2007, 32(2): 256-267. |
| 35 | WINTERS W S, HOUF W G. Simulation of small-scale releases from liquid hydrogen storage systems[J]. International Journal of Hydrogen Energy, 2011, 36(6): 3913-3921. |
| 36 | TRAVIS J R, PICCIONI KOCH D, BREITUNG W. A homogeneous non-equilibrium two-phase critical flow model[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17373-17379. |
| 37 | WITCOFSKI R D, CHIRIVELLA J E. Experimental and analytical analyses of the mechanisms governing the dispersion of flammable clouds formed by liquid hydrogen spills[J]. International Journal of Hydrogen Energy, 1984, 9(5): 425-435. |
| 38 | SHAO Xiangyu, PU Liang, TANG Xin, et al. Parametric influence study of cryogenic hydrogen dispersion on theoretical aspect[J]. International Journal of Hydrogen Energy, 2020, 45(38): 20153-20162. |
| 39 | SHU Zhiyong, LEI Gang, LIANG Wenqing, et al. Experimental investigation of hydrogen dispersion characteristics with liquid helium spills in moist air[J]. Process Safety and Environmental Protection, 2022, 162: 923-931. |
| 40 | XIAO Jinsheng, HE Pan, LI Xuefang, et al. Computational fluid dynamics model based artificial neural network prediction of flammable vapor clouds formed by liquid hydrogen releases[J]. International Journal of Energy Research, 2022, 46(8): 11011-11026. |
| 41 | HOUF W G, WINTERS W S. Simulation of high-pressure liquid hydrogen releases[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8092-8099. |
| 42 | HANSEN Olav Roald. Hydrogen infrastructure—Efficient risk assessment and design optimization approach to ensure safe and practical solutions[J]. Process Safety and Environmental Protection, 2020, 143: 164-176. |
| 43 | SHU Zhiyong, LIANG Wenqing, LIU Fan, et al. Diffusion characteristics of liquid hydrogen spills in a crossflow field: Prediction model and experiment[J]. Applied Energy, 2022, 323: 119617. |
| 44 | SHU Zhiyong, LIANG Wenqing, LEI Gang, et al. Theoretical modeling of diffusion clouds of liquid hydrogen spilling in crosswind field with atmospheric inversion layer[J]. International Journal of Hydrogen Energy, 2023, 48(81): 31813-31822. |
| 45 | FERRARI Federica. Data analytics for hydrogen safety: Prediction of liquid hydrogen release characteristics[D]. Trondheim: Norwegian University of Science and Technology, 2022. |
| 46 | ICHARD M, HANSEN O R, MIDDHA P, et al. CFD computations of liquid hydrogen releases[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17380-17389. |
| 47 | YU Haishuai, GAO Qiang, PU Liang, et al. Numerical investigation on the characteristics of leakage and dispersion of cryogenic liquid oxygen in open environment[J]. Cryogenics, 2022, 125: 103514. |
| 48 | SHAO Xiangyu, PU Liang, LI Qiang, et al. Numerical investigation of flammable cloud on liquid hydrogen spill under various weather conditions[J]. International Journal of Hydrogen Energy, 2018, 43(10): 5249-5260. |
| 49 | MIDDHA Prankul, ICHARD Mathieu, ARNTZEN Bjørn J. Validation of CFD modelling of LH2 spread and evaporation against large-scale spill experiments[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2620-2627. |
| 50 | GIANNISSI S G, VENETSANOS A G, MARKATOS N, et al. CFD modeling of hydrogen dispersion under cryogenic release conditions[J]. International Journal of Hydrogen Energy, 2014, 39(28): 15851-15863. |
| 51 | GIANNISSI S G, VENETSANOS A G. Study of key parameters in modeling liquid hydrogen release and dispersion in open environment[J]. International Journal of Hydrogen Energy, 2018, 43(1): 455-467. |
| 52 | PU Liang, TANG Xin, SHAO Xiangyu, et al. Numerical investigation on the difference of dispersion behavior between cryogenic liquid hydrogen and methane[J]. International Journal of Hydrogen Energy, 2019, 44(39): 22368-22379. |
| 53 | LI Zhiyong, PAN Xiangmin, SUN Ke, et al. Comparison of the harm effects of accidental releases: Cryo-compressed hydrogen versus natural gas[J]. International Journal of Hydrogen Energy, 2013, 38(25): 11174-11180. |
| 54 | VERFONDERN K, DIENHART B. Experimental and theoretical investigation of liquid hydrogen pool spreading and vaporization[J]. International Journal of Hydrogen Energy, 1997, 22(7): 649-660. |
| 55 | STATHARAS J C, VENETSANOS A G, BARTZIS J G, et al. Analysis of data from spilling experiments performed with liquid hydrogen[J]. Journal of Hazardous Materials, 2000, 77(1/2/3): 57-75. |
| 56 | MIDDHA Prankul, HANSEN Olav R, GRUNE Joachim, et al. CFD calculations of gas leak dispersion and subsequent gas explosions: Validation against ignited impinging hydrogen jet experiments[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 84-94. |
| 57 | JIN Tao, WU Mengxi, LIU Yuanliang, et al. CFD modeling and analysis of the influence factors of liquid hydrogen spills in open environment[J]. International Journal of Hydrogen Energy, 2017, 42(1): 732-739. |
| 58 | LIU Yuanliang, WEI Jianjian, LEI Gang, et al. Dilution of hazardous vapor cloud in liquid hydrogen spill process under different source conditions[J]. International Journal of Hydrogen Energy, 2018, 43(15): 7643-7651. |
| 59 | LIU Yuanliang, WEI Jianjian, LEI Gang, et al. Modeling the development of hydrogen vapor cloud considering the presence of air humidity[J]. International Journal of Hydrogen Energy, 2019, 44(3): 2059-2068. |
| 60 | LIU Yuanliang, WEI Jianjian, LEI Gang, et al. Numerical investigation on the effects of dike around liquid hydrogen source on vapor cloud dispersion[J]. International Journal of Hydrogen Energy, 2019, 44(10): 5063-5071. |
| 61 | LIU Yuanliang, WEI Jianjian, LEI Gang, et al. Spread of hydrogen vapor cloud during continuous liquid hydrogen spills[J]. Cryogenics, 2019, 103: 102975. |
| 62 | LIU Yuanliang, WEI Jianjian, LIU Zhan, et al. Dilution of flammable vapor cloud formed by liquid hydrogen spill[J]. International Journal of Hydrogen Energy, 2020, 45(7): 5067-5072. |
| 63 | SUN Ruofan, PU Liang, YU Haishuai, et al. Modeling the diffusion of flammable hydrogen cloud under different liquid hydrogen leakage conditions in a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2022, 47(61): 25849-25863. |
| 64 | MOLKOV Vladimir, SAFFERS Jean-Bernard. Hydrogen jet flames[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8141-8158. |
| 65 | DELICHATSIOS M A. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships[J]. Combustion and Flame, 1993, 92(4): 349-364. |
| 66 | SCHEFER R W, HOUF W G, WILLIAMS T C, et al. Characterization of high-pressure, underexpanded hydrogen-jet flames[J]. International Journal of Hydrogen Energy, 2007, 32(12): 2081-2093. |
| 67 | MOLINA Alejandro, SCHEFER Robert W, HOUF William G. Radiative fraction and optical thickness in large-scale hydrogen-jet fires[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2565-2572. |
| 68 | EKOTO I W, RUGGLES A J, CREITZ L W, et al. Updated jet flame radiation modeling with buoyancy corrections[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20570-20577. |
| 69 | MOLKOV Vladimir. Fundamentals of hydrogen safety engineering Ⅰ[M]. London: Ventus Publishing Aps, 2012: 131. |
| 70 | GU Mingyan, HE Qing, TANG Fei. Experimental and machine learning studies of thermal impinging flow under ceiling induced by hydrogen-blended methane jet fire: Temperature distribution and flame extension characteristics[J]. International Journal of Heat and Mass Transfer, 2023, 215: 124502. |
| 71 | BIRCH A D, HUGHES D J, SWAFFIELD F. Velocity decay of high pressure jets[J]. Combustion Science and Technology, 1987, 52(1/2/3): 161-171. |
| 72 | HOUF W G, EVANS G H, SCHEFER R W. Analysis of jet flames and unignited jets from unintended releases of hydrogen[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5961-5969. |
| 73 | LIU Jiaoyan, FAN Yanqing, ZHOU Kuibin, et al. Prediction of flame length of horizontal hydrogen jet fire during high-pressure leakage process[J]. Procedia Engineering, 2018, 211: 471-478. |
| 74 | CONSALVI Jean-Louis, NMIRA Fatiha. Modeling of large-scale under-expanded hydrogen jet fires[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3943-3950. |
| 75 | CIRRONE D M C, MAKAROV D, MOLKOV V. Thermal radiation from cryogenic hydrogen jet fires[J]. International Journal of Hydrogen Energy, 2019, 44(17): 8874-8885. |
| 76 | CIRRONE Donatella, MAKAROV Dmitriy, KUZNETSOV Mike, et al. Effect of heat transfer through the release pipe on simulations of cryogenic hydrogen jet fires and hazard distances[J]. International Journal of Hydrogen Energy, 2022, 47(50): 21596-21611. |
| 77 | BRENNAN S L, MAKAROV D V, MOLKOV V. LES of high pressure hydrogen jet fire[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 353-359. |
| 78 | YU Xing, WU Yue, ZHAO Yanqiu, et al. Flame characteristics of under-expanded, cryogenic hydrogen jet fire[J]. Combustion and Flame, 2022, 244: 112294. |
| 79 | PANDA Pratikash P, HECHT Ethan S. Ignition and flame characteristics of cryogenic hydrogen releases[J]. International Journal of Hydrogen Energy, 2017, 42(1): 775-785. |
| 80 | GU Xiaochen, ZHANG Jiandu, PAN Yong, et al. Hazard analysis on tunnel hydrogen jet fire based on CFD simulation of temperature field and concentration field[J]. Safety Science, 2020, 122: 104532. |
| 81 | XIE Yongliang, Na Lyu, WANG Xujiang, et al. Thermal and fire characteristics of hydrogen jet flames in the tunnel at longitudinal ventilation strategies[J]. Fuel, 2021, 306: 121659. |
| 82 | MUESCHKE Nicholas J, JOYCE Alexandra. Measurement of gas detonation blast loads in semiconfined geometry[J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 104004. |
| 83 | MOLKOV V, KASHKAROV S. Blast wave from a high-pressure gas tank rupture in a fire: Stand-alone and under-vehicle hydrogen tanks[J]. International Journal of Hydrogen Energy, 2015, 40(36): 12581-12603. |
| 84 | JALLAIS Simon, VYAZMINA Elena, MILLER Derek, et al. Hydrogen jet vapor cloud explosion: A model for predicting blast size and application to risk assessment[J]. Process Safety Progress, 2018, 37(3): 397-410. |
| 85 | SINHA Anubhav, WEN Jennifer X. A simple model for calculating peak pressure in vented explosions of hydrogen and hydrocarbons[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22719-22732. |
| 86 | Regis L BAUWENS C, DOROFEEV Sergey B. Modeling detonation limits for arbitrary non-uniform concentration distributions in fuel–air mixtures[J]. Combustion and Flame, 2020, 221: 338-345. |
| 87 | DOBASHI Ritsu, KAWAMURA Satoshi, KUWANA Kazunori, et al. Consequence analysis of blast wave from accidental gas explosions[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2295-2301. |
| 88 | ZHOU Yonghao, HUANG Lei, LI Yanchao, et al. The prediction model for explosion overpressure in unconfined hydrogen cloud explosion[J]. Journal of Loss Prevention in the Process Industries, 2024, 88: 105254. |
| 89 | 毛宗强, 王昌建, 李权, 等. 氢安全[M]. 北京: 化学工业出版社, 2020: 28-31. |
| MAO Zongqiang, WANG Changjian, LI Quan, et al. Hydrogen safety[M]. Beijing: Chemical Industry Press, 2020: 28-31. | |
| 90 | LI Qilin, WANG Yang, LI Ling, et al. Prediction of BLEVE loads on structures using machine learning and CFD[J]. Process Safety and Environmental Protection, 2023, 171: 914-925. |
| 91 | SHI Jihao, CHANG Bo, KHAN Faisal, et al. Stochastic explosion risk analysis of hydrogen production facilities[J]. International Journal of Hydrogen Energy, 2020, 45(24): 13535-13550. |
| 92 | LI Jianhang, LIANG Wenkai, HAN Wenhu. Predicting the explosion limits of hydrogen-oxygen-diluent mixtures using machine learning approach[J]. International Journal of Hydrogen Energy, 2024, 50: 1306-1313. |
| 93 | BO Yaofen, LI Yanchao, GAO Wei. Exploring the effects of turbulent field on propagation behaviors in confined hydrogen-air explosion using OpenFOAM[J]. International Journal of Hydrogen Energy, 2024, 50: 912-927. |
| 94 | LOWESMITH B J, MUMBY C, HANKINSON G, et al. Vented confined explosions involving methane/hydrogen mixtures[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2337-2343. |
| 95 | SILVESTRINI M, GENOVA B, LEON TRUJILLO F J. Energy concentration factor. A simple concept for the prediction of blast propagation in partially confined geometries[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(4): 449-454. |
| 96 | TOLIAS I C, VENETSANOS A G, MARKATOS N, et al. CFD modeling of hydrogen deflagration in a tunnel[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20538-20546. |
| 97 | VYAZMINA E, JALLAIS S. Validation and recommendations for FLACS CFD and engineering approaches to model hydrogen vented explosions: Effects of concentration, obstruction vent area and ignition position[J]. International Journal of Hydrogen Energy, 2016, 41(33): 15101-15109. |
| 98 | TOLIAS I C, STEWART J R, NEWTON A, et al. Numerical simulations of vented hydrogen deflagration in a medium-scale enclosure[J]. Journal of Loss Prevention in the Process Industries, 2018, 52: 125-139. |
| 99 | ROCOURT X, SOCHET I, PELLEGRINELLI B. Small-scale flame acceleration and application of medium and large-scale flame speed correlations[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1327-1336. |
| 100 | BOECK L R, BERGER F M, HASSLBERGER J, et al. Detonation propagation in hydrogen-air mixtures with transverse concentration gradients[J]. Shock Waves, 2016, 26(2): 181-192. |
| 101 | KHODADADI AZADBONI Reza, HEIDARI Ali, BOECK Lorenz R, et al. The effect of concentration gradients on deflagration-to-detonation transition in a rectangular channel with and without obstructions-A numerical study[J]. International Journal of Hydrogen Energy, 2019, 44(13): 7032-7040. |
| 102 | KLEBANOFF L E, PRATT J W, LAFLEUR C B. Comparison of the safety-related physical and combustion properties of liquid hydrogen and liquid natural gas in the context of the SF-BREEZE high-speed fuel-cell ferry[J]. International Journal of Hydrogen Energy, 2017, 42(1): 757-774. |
| 103 | AJRASH Mohammed J, ZANGANEH Jafar, MOGHTADERI Behdad. Influences of the initial ignition energy on methane explosion in a flame deflagration tube[J]. Energy & Fuels, 2017, 31(6): 6422-6434. |
| 104 | YANG Zhuohua, WANG Zhirong, CAO Xiaojiao, et al. Influences of concentration gradients and ignition positions on unconfined inhomogeneous hydrogen explosion[J]. International Journal of Hydrogen Energy, 2024, 50: 857-869. |
| 105 | SCARPA R, STUDER E, KUDRIAKOV S, et al. Influence of initial pressure on hydrogen/air flame acceleration during severe accident in NPP[J]. International Journal of Hydrogen Energy, 2019, 44(17): 9009-9017. |
| 106 | TANG Chenglong, HUANG Zuohua, JIN Chun, et al. Explosion characteristics of hydrogen-nitrogen-air mixtures at elevated pressures and temperatures[J]. International Journal of Hydrogen Energy, 2009, 34(1): 554-561. |
| 107 | American National Standards Institute. Guide to safety of hydrogen and hydrogen systems: G-095A-2017 [S]. Reston: American Institute of Aeronautics and Astronautics, 2017. |
| 108 | SCHROEDER V, HOLTAPPELS K. Explosion characteristics of hydrogen-air and hydrogen-oxygen mixtures at elevated pressures[C]//International Conference on Hydrogen Safety. Belgium: HySafe, 2005. |
| 109 | LIU Kun, JIANG Jieyu, HE Canxing, et al. Numerical analysis of the diffusion and explosion characteristics of hydrogen-air clouds in a plateau hydrogen refuelling station[J]. International Journal of Hydrogen Energy, 2023, 48(100): 40101-40116. |
| 110 | XIAO Huahua, ORAN Elaine S. Flame acceleration and deflagration-to-detonation transition in hydrogen-air mixture in a channel with an array of obstacles of different shapes[J]. Combustion and Flame, 2020, 220: 378-393. |
| 111 | DAI Tingkai, ZHANG Bo, LIU Hong. On the explosion characteristics for central and end-wall ignition in hydrogen-air mixtures: A comparative study[J]. International Journal of Hydrogen Energy, 2021, 46(60): 30861-30869. |
| 112 | GAMEZO Vadim N, OGAWA Takanobu, ORAN Elaine S. Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing[J]. Combustion and Flame, 2008, 155(1/2): 302-315. |
| 113 | WANG Luqing, MA Honghao. Explosion dynamics of hydrogen-air mixtures in a flat vessel filled with annular obstacles[J]. Fuel, 2021, 298: 120835. |
| 114 | WANG Qiao, LUO Xinjiao, LI Quan, et al. Explosion venting of hydrogen-air mixture in an obstructed rectangular tube[J]. Fuel, 2022, 310: 122473. |
| 115 | SKJOLD T, HISKEN H, LAKSHMIPATHY S, et al. Vented hydrogen deflagrations in containers: Effect of congestion for homogeneous and inhomogeneous mixtures[J]. International Journal of Hydrogen Energy, 2019, 44(17): 8819-8832. |
| 116 | LI Hongwei, GUO Jin, TANG Zesi, et al. Effects of ignition, obstacle, and side vent locations on vented hydrogen-air explosions in an obstructed duct[J]. International Journal of Hydrogen Energy, 2019, 44(36): 20598-20605. |
| [1] | JIN Zhihao, WANG Yunfan, TIAN Zhenyu. Strategies for combustion kinetics of afterburning in rocket engine exhaust plumes [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1776-1780. |
| [2] | JIA Yijing, TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong. Research progress on iron-based catalysts for CO2 hydrogenation to low carbon olefins [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 820-833. |
| [3] | YANG Fan, ZHAO Yitao, ZHU Xuedong, WANG Darui. Application of ternary spinel and twined ZSM-5 zeolite in methylation of benzene with carbon dioxide [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 856-866. |
| [4] | ZHANG Huanling, MA Huixia, ZHOU Feng, ZHAO Chenghao, ZHU Xiaolin, WANG Guowei, LI Chunyi. Effect of introduced In species on propane dehydrogenation over Ge/SiO2 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 879-886. |
| [5] | ZHENG Rao, HU Dingguo, LIU Zhiyuan, SONG Zifeng, ZHANG Jiangteng, LI Shuangxi. Sealing performance analysis of hydrostatic helium isolation seals in variable operating conditions [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 677-687. |
| [6] | LIU Fazhi, ZHANG Pengwei, LIU Tao, XIE Yuxian, HE Jianle, SU Sheng, XU Jun, XIANG Jun. Mechanism of anti-CO poisoning of Sb-modified vanadium-titanium SCR denitrification catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1129-1137. |
| [7] | QIAO Lei, ZHANG Yaxin, WEI Bo, RAN Wenshen, MA Jingrong, WANG Feng. Optimization of burner layout parameters and operating parameters of oxy-thermal entrained-flow calcium carbide reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 145-157. |
| [8] | DING Wei, DU Wei, GUO Tiebin, GUAN Xiaozhuo, WANG Tiezheng, GAO Jiantong, ZHANG Nan, LI Da, ZHANG Lanhe. Preparation and anti-corrosion research of graphene oxide modified by L-glutamic acid composite epoxy resin coating [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 424-435. |
| [9] | WANG Ning, LU Shijian, LIU Ling, LIANG Jing, LIU Miaomiao, SUN Mengyuan, KANG Guojun. Research progress of catalytic regeneration for energy-efficient CO2 capture in amine absorption system [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 445-464. |
| [10] | ZOU Yan, LIN Wei, YANG Wei, ZHANG Yanrong. Optimization of wet desulfurization process with iron chelates [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 549-557. |
| [11] | HU Yang, HAN Chuanjun, HU Qiang, LI Wenying, AN Quancheng, SU Yang, WU Hongsong, YUAN Guo. Research progress on methanol steam reforming reactors for SOFC [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 169-183. |
| [12] | SHAO Xiangyu, CAO Tianhao, XIONG Yanyi, PU Liang, LEI Gang, GAO Jianliang. Research hotspots, frontiers and evolution in the field of liquid hydrogen in China during the last 30 years (1994—2023) [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 212-227. |
| [13] | QIN Tingting, NIU Qiang. Research progress on Fe-based catalysts for CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 253-265. |
| [14] | LI Jiayou, ZHANG Yuhan, JIANG Nan, JIANG Bolong. Preparation of transition metal sulfide NiS(x)@NFcatalyst by hydrothermal method and its hydrogen evolution performance [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 297-304. |
| [15] | ZOU Pengxiang, ZHANG Mingyang, ZHU Wenjie, GUO Yaojun, CHENG Jie, ZHAO Yanshu, YUAN Yingchun. Optimization of inlet structure of liquid-liquid impinging stream cyclone reactor for epoxidation of fatty acid methyl ester based on CFD [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 166-173. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |