| [1] |
王文雨, 张帅国, 冯宇, 等. 碳纳米管制备技术的研究进展[J]. 天然气化工(C1化学与化工), 2020, 45(4): 123-129.
|
|
WANG Wenyu, ZHANG Shuaiguo, FENG Yu, et al. Research progress of carbon nanotube preparation technology[J]. Natural Gas Chemical Industry, 2020, 45(4): 123-129
|
| [2] |
DE LUCA Pierantonio, SICILIANO Carlo, NAGY Janos B,et al. The role of carbon nanotubes in the reactions of heterogeneous catalysis[J]. Chemical Engineering Research and Design, 2023, 197: 74-84.
|
| [3] |
Heath TURNER C, BRENNAN John K, PIKUNIC Jorge, et al. Simulation of chemical reaction equilibria and kinetics in heterogeneous carbon micropores[J]. Applied Surface Science, 2002, 196(1/2/3/4): 366-374.
|
| [4] |
KROTO Harold W, HEATH James R, O’BRIEN Sean C,et al. C60: Buckminsterfullerene[J]. Nature, 1985, 318(6042): 162-163.
|
| [5] |
IIJIMA Sumio. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58.
|
| [6] |
张亚飞. 碳纳米材料在超级电容器中的应用[J]. 材料导报, 2023, 37(S2): 37-43.
|
|
ZHANG Yafei. Carbon nanomaterials as supercapacitor electrodes[J]. Materials Reports, 2023, 37(S2): 37-43
|
| [7] |
HSIAO Chunghsuan, LEE Chiyoung, TAI Nyanhwa. High retention supercapacitors using carbon nanomaterials/iron oxide/nickel-iron layered double hydroxides as electrodes[J]. Journal of Energy Storage, 2022, 46: 103805.
|
| [8] |
杨敏, 张瑜, 朱效博,等. 碳纳米管作为载体在生物医学中的研究进展[J]. 中国动物检疫, 2022, 39(3): 65-70.
|
|
YANG Min, ZHANG Yu, ZHU Xiaobo, et al. Research progress of carbon nanotubes as carriers in biomedical sciences[J]. China Animal Health Inspection, 2022, 39(3): 65-70.
|
| [9] |
PARAMASIVAM Gokul, PALEM Vishnu Vardhan, MEENAKSHY Simi, et al. Advances on carbon nanomaterials and their applications in medical diagnosis and drug delivery[J]. Colloids and Surfaces B: Biointerfaces, 2024, 241: 114032.
|
| [10] |
封硕, 赵阳, 王欢. 基于纳米碳材料的重金属电化学检测[J]. 化工科技, 2023, 31(4): 83-88.
|
|
FENG Shuo, ZHAO Yang, WANG Huan. Electrochemical detection of heavy metals based on nanocarbon materials[J]. Science & Technology in Chemical Industry, 2023, 31(4): 83-88
|
| [11] |
LIU Runqiang, LI Bo, LI Fang, et al. A novel electrochemical sensor based on β-cyclodextrin functionalized carbon nanosheets@carbon nanotubes for sensitive detection of bactericide carbendazim in apple juice[J]. Food Chemistry, 2022, 384: 132573.
|
| [12] |
陈少杰, 袁梓昊, 徐雨涵,等. 水热碳化制备碳材料及其吸附水中污染物的研究进展[J]. 化工技术与开发, 2023, 52(9): 57-60.
|
|
CHEN Shaojie, YUAN Zihao, XU Yuhan, et al. Research progress of carbon materials prepared by hydrothermal carbonization and its adsorption of pollutants in water[J]. Technology & Development of Chemical Industry, 2023, 52(9): 57-60
|
| [13] |
EGUN Ishioma L, HE Haiyong, HU Di, et al. Molten salt carbonization and activation of biomass to functional biocarbon[J]. Advanced Sustainable Systems, 2022, 6(12): 2200294.
|
| [14] |
OMORIYEKOMWAN Joy Esohe, TAHMASEBI Arash, ZHANG Jian, et al. Formation of hollow carbon nanofibers on bio-char during microwave pyrolysis of palm kernel shell[J]. Energy Conversion and Management, 2017, 148: 583-592.
|
| [15] |
DEBALINA B, REDDY Rajasekhar B, VINU R. Production of carbon nanostructures in biochar, bio-oil and gases from bagasse via microwave assisted pyrolysis using Fe and Co as susceptors[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 310-318.
|
| [16] |
WANG Biao, CHEN Yasen, CHEN Wei, et al. Enhancement of aromatics and syngas production by co-pyrolysis of biomass and plastic waste using biochar-based catalysts in microwave field[J]. Energy, 2024, 293: 130711.
|
| [17] |
SRIDEVI Veluru, SURYA Dadi Venkata, REDDY Busigari Rajasekhar, et al. Challenges and opportunities in the production of sustainable hydrogen from lignocellulosic biomass using microwave-assisted pyrolysis: A review[J]. International Journal of Hydrogen Energy, 2024, 52: 507-531.
|
| [18] |
李明, 田洪春, 黄智刚. 我国甘蔗产业发展现状研究[J]. 中国糖料, 2017, 39(1): 67-70.
|
|
LI Ming, TIAN Hongchun, HUANG Zhigang. Research on the development status of sugarcane industry in China[J]. Sugar Crops of China, 2017, 39(1): 67-70.
|
| [19] |
MATHUR A, WADHWA S, TWEEDIE M, et al. A comparative study of the growth, microstructural and electrical properties of multiwall CNTs grown by thermal and microwave plasma enhanced CVD methods[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44(1): 29-36.
|
| [20] |
SHI Miaomiao, BAO Di, LI Sijia, et al. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution[J]. Advanced Energy Materials, 2018, 8(21): 1800124.
|
| [21] |
PACHFULE Pradip, SHINDE Dhanraj, MAJUMDER Mainak, et al. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework[J]. Nature Chemistry, 2016, 8(7): 718-724.
|
| [22] |
姚运金, 张素平, 颜涌捷. 温度对CVD法制备多壁碳纳米管的影响[J]. 功能材料, 2005, 36(6): 900-902, 905.
|
|
YAO Yunjin, ZHANG Suping, YAN Yongjie. Temperature effect on the preparation of MWNTs using thermal chemical vapor deposition[J]. Journal of Functional Materials, 2005, 36(6): 900-902, 905.
|