Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (8): 4382-4392.DOI: 10.16085/j.issn.1000-6613.2023-1140
• Industrial catalysis • Previous Articles
ZHANG Yesu1,2(), QUAN Yanhong1,2(), DING Xinxin1,2, REN Jun1,2()
Received:
2023-07-07
Revised:
2024-01-14
Online:
2024-09-02
Published:
2024-08-15
Contact:
QUAN Yanhong, REN Jun
张叶素1,2(), 权燕红1,2(), 丁欣欣1,2, 任军1,2()
通讯作者:
权燕红,任军
作者简介:
张叶素(1999—),女,硕士研究生,研究方向为一碳化学与化工。E-mail: 946463348@qq.com。
基金资助:
CLC Number:
ZHANG Yesu, QUAN Yanhong, DING Xinxin, REN Jun. Synthesis and application of chainlike MFI type zeolites[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4382-4392.
张叶素, 权燕红, 丁欣欣, 任军. 链状MFI型分子筛的合成与应用[J]. 化工进展, 2024, 43(8): 4382-4392.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1140
合成方法 | MFI型 分子筛 | 模板剂 | Si/Al或Si/Ti | 比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 特征与优势 | 应用 | 参考文献 |
---|---|---|---|---|---|---|---|---|
水热合成法 | ||||||||
模板法 | ZSM-5 | TPAOH | 70 | 315 | 0.47 | 中空、介孔结构 | 催化裂解 | [ |
TPAOH | 63 | 313 | 0.28 | 介孔结构 | 异构化 | [ | ||
TPAOH | 83 | 398.8 | — | 链长适当 | CO2加氢制芳烃 | [ | ||
助剂辅助法 | ZSM-5 | TPAOH、PDDA | 90 | 470 | 0.27 | 介孔结构 | 甲醇制烯烃 | [ |
TPAOH、PDDA | 50 | 538.7 | 0.77 | 介孔结构 | 催化裂解 | [ | ||
TPAOH、蔗糖 | 136 | 397 | 0.36 | 介孔结构 | 甲基化 | [ | ||
TPAOH、SA | 16~64 | 410 | 0.25 | — | — | [ | ||
TPAOH、乙醇 | 50 | 370.7 | 0.63 | — | — | [ | ||
微波合成法 | TS-1 | TPAOH | 70~230 | 423 | 0.21 | 长而直的孔道、较强的疏水性 | 吸附分离 | [ |
TPAOH | 71 | 329 | 0.23 | 适当的酸性 | 环氧化 | [ | ||
ZSM-5 | TPAOH | 70~90 | 451 | 0.37 | — | — | [ |
合成方法 | MFI型 分子筛 | 模板剂 | Si/Al或Si/Ti | 比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 特征与优势 | 应用 | 参考文献 |
---|---|---|---|---|---|---|---|---|
水热合成法 | ||||||||
模板法 | ZSM-5 | TPAOH | 70 | 315 | 0.47 | 中空、介孔结构 | 催化裂解 | [ |
TPAOH | 63 | 313 | 0.28 | 介孔结构 | 异构化 | [ | ||
TPAOH | 83 | 398.8 | — | 链长适当 | CO2加氢制芳烃 | [ | ||
助剂辅助法 | ZSM-5 | TPAOH、PDDA | 90 | 470 | 0.27 | 介孔结构 | 甲醇制烯烃 | [ |
TPAOH、PDDA | 50 | 538.7 | 0.77 | 介孔结构 | 催化裂解 | [ | ||
TPAOH、蔗糖 | 136 | 397 | 0.36 | 介孔结构 | 甲基化 | [ | ||
TPAOH、SA | 16~64 | 410 | 0.25 | — | — | [ | ||
TPAOH、乙醇 | 50 | 370.7 | 0.63 | — | — | [ | ||
微波合成法 | TS-1 | TPAOH | 70~230 | 423 | 0.21 | 长而直的孔道、较强的疏水性 | 吸附分离 | [ |
TPAOH | 71 | 329 | 0.23 | 适当的酸性 | 环氧化 | [ | ||
ZSM-5 | TPAOH | 70~90 | 451 | 0.37 | — | — | [ |
1 | 徐如人, 庞文琴, 于吉红, 等. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004. |
XU Ruren, PANG Wenqin, YU Jihong, et al. Molecular sieves and porous materials chemistry[M]. Beijing: Science Press, 2004. | |
2 | OLSON D H, KOKOTAILO G T, LAWTON S L, et al. Crystal structure and structure-related properties of ZSM-5[J]. The Journal of Physical Chemistry, 1981, 85(15): 2238-2243. |
3 | 权燕红. 链形ZSM-5分子筛的控制合成及取向生长机理研究[D]. 北京: 中国科学院大学, 2017. |
QUAN Yanhong. Study on the controllable synthesis and oriented growth mechanism of chainlike ZSM-5 zeolite[D]. Beijing: University of Chinese Academy of Sciences, 2017. | |
4 | ARGAUER R J, LANDOLT G R. Crystallization zeolite ZSM-5 and method of preparing the same: US3702886[P]. 1972-11-14. |
5 | KOKOTAILO G T, LAWTON S L, OLSON D H, et al. Structure of synthetic zeolite ZSM-5[J]. Nature, 1978, 272: 437-438. |
6 | TARAMASSO Marco, PEREGO Giovanni, NOTARI Bruno. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides: US4410501[P]. 1983-10-18. |
7 | ZHAO Tingting, LI Fuwei, YU Hongchang, et al. Synthesis of mesoporous ZSM-5 zeolites and catalytic cracking of ethanol and oleic acid into light olefins[J]. Applied Catalysis A: General, 2019, 575: 101-110. |
8 | 张春梅, 付廷俊, 邵娟, 等. 介孔结构和助剂Zn对不同晶粒大小ZSM-5催化甲醇制芳烃反应性能的影响[J]. 化工进展, 2019, 38(4): 1758-1767. |
ZHANG Chunmei, FU Tingjun, SHAO Juan, et al. Effects of mesoporous structure and Zn promoter on methanol to aromatics performance over different crystal sized ZSM-5 catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1758-1767. | |
9 | 崔生航, 张君涛, 申志兵. 多级孔道ZSM-5分子筛的合成及其催化应用[J]. 化工进展, 2015, 34(9): 3311-3316, 3336. |
CUI Shenghang, ZHANG Juntao, SHEN Zhibing. Hierarchical ZSM-5 zeolite: Synthesis and catalytic applications[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3311-3316, 3336. | |
10 | QUAN Yanhong, LI Shiying, WANG Sen, et al. Synthesis of chainlike ZSM-5 zeolites: Determination of synthesis parameters, mechanism of chainlike morphology formation, and their performance in selective adsorption of xylene isomers[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 14899-14910. |
11 | 黄世勇, 任育宏, 黄尚顺, 等. 不同形貌ZSM-5分子筛的合成及甲醇制汽油催化性能[J]. 广西大学学报(自然科学版), 2020, 45(2): 414-420. |
HUANG Shiyong, REN Yuhong, HUANG Shangshun, et al. Synthesis of ZSM-5 zeolites with different morphology and the catalytic performance for methanol to gasoline (MTG) reaction[J]. Journal of Guangxi University (Natural Science Edition), 2020, 45(2): 414-420. | |
12 | ZHOU Zihan, JIANG Rongli, CHEN Xueshuai, et al. One-step synthesis of hierarchical lamellar H-ZSM-5 zeolite and catalytic performance of methanol to olefin[J]. Journal of Solid State Chemistry, 2021, 298: 122132. |
13 | TANG Guoqiang, LI Yichuan, WANG Yu, et al. A review on the synthesis, structural modification and application of two-dimensional MFI zeolite[J]. Journal of Porous Materials, 2022, 29(6): 1649-1666. |
14 | PARK Sang-Eon, CHANG Jong-San, HWANG Young Kyu, et al. Supramolecular interactions and morphology control in microwave synthesis of nanoporous materials[J]. Catalysis Surveys from Asia, 2004, 8(2): 91-110. |
15 | Afsaneh SHIRZADEH-GHARACHEH, Masoud RAHBARI-SISAKHT. Polyvinylidene fluoride hollow fiber mixed matrix membrane contactor incorporating modified ZSM-5 zeolite for carbon dioxide absorption[J]. RSC Advances, 2016, 6(82): 78865-78874. |
16 | DAI Weijiong, KOUVATAS Cassandre, TAI Wenshu, et al. Platelike MFI crystals with controlled crystal faces aspect ratio[J]. Journal of the American Chemical Society, 2021, 143(4): 1993-2004. |
17 | 邵秀丽, 王驷骐, 张轩, 等. 纳米片层结构MFI分子筛的合成及应用[J]. 化学进展, 2022, 34(12): 2651-2666. |
SHAO Xiuli, WANG Siqi, ZHANG Xuan, et al. Fabrication and application of MFI zeolite nanosheets[J]. Progress in Chemistry, 2022, 34(12): 2651-2666. | |
18 | HAO Jing, XU Shuman, CHENG Dangguo, et al. Synthesis of nanosheet epitaxial growth ZSM-5 zeolite with increased diffusivity and its catalytic cracking performance[J]. Catalysis Science & Technology, 2022, 12(12): 3912-3920. |
19 | 姜健准, 张明森, 柯丽, 等. 超细ZSM-5分子筛的制备及其形貌表征[J]. 化工进展, 2012, 31(9): 1980-1984. |
JIANG Jianzhun, ZHANG Mingsen, KE Li, et al. Synthesis and characterization of ultra-fine ZSM-5 zeolite[J]. Chemical Industry and Engineering Progress, 2012, 31(9): 1980-1984. | |
20 | MA Tong, ZHANG Luoming, SONG Yu, et al. A comparative synthesis of ZSM-5 with ethanol or TPABr template: Distinction of Brønsted/Lewis acidity ratio and its impact on n-hexane cracking[J]. Catalysis Science & Technology, 2018, 8(7): 1923-1935. |
21 | 童伟益, 宋家庆, 赵昱. 原位合成球花形貌多级孔ZSM-5及其催化甲醇制丙烯性能[J]. 化学反应工程与工艺, 2021, 37(6): 505-512. |
TONG Weiyi, SONG Jiaqing, ZHAO Yu. Synthesis and methanol to propylene properties of flowerlike spheroidal morphology hierarchical ZSM-5[J]. Chemical Reaction Engineering and Technology, 2021, 37(6): 505-512. | |
22 | 刘文婷. 具有介孔的链状MFI型分子筛的合成、表征及催化性能初探[D]. 长春: 吉林大学, 2010. |
LIU Wenting. Synthesis, characterization and catalytic properties of mesoporous MFI zeolite with self-stacked morphology[D].Changchun: Jilin University, 2010. | |
23 | HE Wen, LI Fuwei, GU Yufei, et al. Synthesis of chainlike ZSM-5 with a polyelectrolyte as a second template for oleic acid and ethanol cracking into light olefins[J]. ACS Omega, 2022, 7(44): 40520-40531. |
24 | JIN Lijun, XIE Tong, LIU Sibao, et al. Controllable synthesis of chainlike hierarchical ZSM-5 templated by sucrose and its catalytic performance[J]. Catalysis Communications, 2016, 75: 32-36. |
25 | JIANG Jinlong, JI Shoupeng, DUANMU Chuansong, et al. Self-assembly of fibrous ZSM-5 zeolites in the presence of sodium alginate[J]. Particuology, 2017, 33: 55-62. |
26 | 侯慧琳, 蒋荣立, 陈学帅, 等. ZSM-5分子筛的合成与应用研究进展[J]. 天然气化工(C1化学与化工), 2021, 46(5): 7-12. |
HOU Huilin, JIANG Rongli, CHEN Xueshuai, et al. Research progress in synthesis and application of ZSM-5 zeolites[J]. Natural Gas Chemical Industry, 2021, 46(5): 7-12. | |
27 | BARRER R M, BAYNHAM J W, BULTITUDE F W, et al. 36. Hydrothermal chemistry of the silicates. Part Ⅷ. Low-temperature crystal growth of aluminosilicates, and of some gallium and germanium analogues[J]. Journal of the Chemical Society (Resumed), 1959(0): 195-208. |
28 | LI Shiying, LI Junfen, DONG Mei, et al. Strategies to control zeolite particle morphology[J]. Chemical Society Reviews, 2019, 48(3): 885-907. |
29 | 刘春燕. ZSM-5沸石水热合成中的晶粒度调控[D]. 大连: 大连理工大学, 2014. |
LIU Chunyan. Crystal size control during the hydrothermal synthesis of ZSM-5 zeolite[D]. Dalian: Dalian University of Technology, 2014. | |
30 | MEI Changsong, LIU Zhicheng, WEN Pengyu, et al. Regular HZSM-5 microboxes prepared via a mild alkaline treatment[J]. Journal of Materials Chemistry, 2008, 18(29): 3496-3500. |
31 | 王晔, 李家栋, 林晓. 自堆积纤维状TS-1分子筛的常规水热合成[J]. 无机化学学报, 2010, 26(9): 1711-1714. |
WANG Ye, LI Jiadong, LIN Xiao. Self-stacked TS-1 zeolite with fibrous morphology prepared by conventional hydrothermal method[J]. Chinese Journal of Inorganic Chemistry, 2010, 26(9): 1711-1714. | |
32 | 牛世军, 王晔, 林晓. 纤维状形貌TS-1分子筛的形成[J]. 南京工业大学学报(自然科学版), 2012, 34(4): 65-68, 73. |
NIU Shijun, WANG Ye, LIN Xiao. Formation of TS-1 zeolite with fibrous morphology[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2012, 34(4): 65-68, 73. | |
33 | AOKI Kensuke, MANN Stephen. Polyelectrolyte-mediated synthesis and self-assembly of silicalite nanocrystals into linear chain superstructures[J]. Journal of Materials Chemistry, 2005, 15(1): 111-113. |
34 | WANG Runwei, LIU Wenting, DING Shuang, et al. Mesoporous MFI zeolites with self-stacked morphology templated by cationic polymer[J]. Chemical Communications, 2010, 46(39): 7418-7420. |
35 | 刘斯宝, 靳立军, 栾珊, 等. 以蔗糖为模板合成链状多级孔道ZSM-5[C]//第六届全国化学工程与生物化工年会论文集. 2010: 1-4. |
LIU Sibao, JIN Lijun, LUAN Shan, et al. Chainlike hierarchical ZSM-5 synthesis templated by sucrose[C]//Proceedings of the Sixth Annual National Conference on Chemical Engineering and Biochemistry. 2010: 1-4. | |
36 | LIU Xiuru, SUN Yiqing. Effect of ethanol on the morphology and textual properties of ZSM-5 zeolite[J]. Catalysts, 2020, 10(2): 198. |
37 | 田晓帅. 水热合成低硅铝比纳米ZSM-5沸石的研究[D]. 大连: 大连理工大学, 2013. |
TIAN Xiaoshuai. Hydrothermal synthesis of nano-ZSM-5 with low SiO2/Al2O3 molar ratio[D]. Dalian: Dalian University of Technology, 2013. | |
38 | MA Zhe, DENG Hua, LI Lin, et al. Fluoride-free and seed-free microwave-assisted hydrothermal synthesis of nanosized high-silica Beta zeolites for effective VOCs adsorption[J]. Chemical Science, 2023, 14(8): 2131-2138. |
39 | 王达锐, 孙洪敏, 薛明伟, 等. 微波法高效合成全结晶ZSM-5分子筛催化剂及其催化性能[J]. 化工进展, 2023, 42(7): 3582-3588. |
WANG Darui, SUN Hongmin, XUE Mingwei, et al. Efficient synthesis of fully crystalline ZSM-5 zeolite catalyst by microwave method and its catalytic performance[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3582-3588. | |
40 | PARK Sang-Eon, CHOI Kwang-Min. Green catalysis by microwave synthesized nanostructured materials[J]. Journal of Physics and Chemistry of Solids, 2008, 69(5/6): 1501-1504. |
41 | ARAFAT A, JANSEN J C, EBAID A R, et al. Microwave preparation of zeolite Y and ZSM-5[J]. Zeolites, 1993, 13(3): 162-165. |
42 | HWANG Young Kyu, CHANG Jong-San, PARK Sang-Eon, et al. Microwave fabrication of MFI zeolite crystals with a fibrous morphology and their applications[J]. Angewandte Chemie International Edition, 2005, 44(4): 556-560. |
43 | JIN Hailian, JIANG Nanzhe, PARK Sang-Eon. Nanoarchitectured synthesis of TS-1 depending on microwave power[J]. Journal of Physics and Chemistry of Solids, 2008, 69(5/6): 1136-1138. |
44 | CHEN Xiaoxin, YAN Wenfu, SHEN Wanling, et al. Morphology control of self-stacked silicalite-1 crystals using microwave-assisted solvothermal synthesis[J]. Microporous and Mesoporous Materials, 2007, 104(1/2/3): 296-304. |
45 | JIN Taihuan, HWANG Young Kyu, HONG Do-Young, et al. Microwave synthesis, characterization and catalytic properties of titanium-incorporated ZSM-5 zeolite[J]. Research on Chemical Intermediates, 2007, 33(6): 501-512. |
46 | XU Chenghua, JIN Taihuan, JHUNG Sung Hwa, et al. Hydrophobicity and catalytic properties of Ti-MFI zeolites synthesized by microwave and conventional heating[J]. Catalysis Today, 2006, 111(3/4): 366-372. |
47 | 赵杉林, 张扬建, 孙桂大, 等. ZSM-5沸石分子筛的微波辐射法合成与表征[J]. 石油学报(石油加工), 1999, 15(3): 89-91. |
ZHAO Shanlin, ZHANG Yangjian, SUN Guida, et al. Characterization and synthesis of zeolite ZSM 5 by microwave radiation[J]. Acta Petrolei Sinica (Petroleum Processing Section), 1999, 15(3): 89-91. | |
48 | 舒静, 任丽丽, 张铁珍, 等. 微波辐射在催化剂制备中的应用[J]. 化工进展, 2008, 27(3): 352-357. |
SHU Jing, REN Lili, ZHANG Tiezhen, et al. Application of microwave irradiation in the preparation of catalyst[J]. Chemical Industry and Engineering Progress, 2008, 27(3): 352-357. | |
49 | SHAN Zhichao, WANG Hong, MENG Xiangju, et al. Designed synthesis of TS-1 crystals with controllable b-oriented length[J]. Chemical Communications, 2011, 47(3): 1048-1050. |
50 | 彭涵, 张纪梅, 王学铭, 等. 杂原子沸石分子筛的合成及应用研究进展[J]. 山东化工, 2019, 48(3): 44-46, 48. |
PENG Han, ZHANG Jimei, WANG Xueming, et al. Advances in synthesis and application of heteroatom-containing zeolites[J]. Shandong Chemical Industry, 2019, 48(3): 44-46, 48. | |
51 | SAKIZCI Meryem, ERDOĞAN ALVER Burcu, Ertuğrul YÖRÜKOĞULLARI. Influence of the exchangeable cations on SO2 adsorption capacities of clinoptilolite-rich natural zeolite[J]. Adsorption, 2011, 17(4): 739-745. |
52 | WANG Chuanfu, ZHANG Lei, HUANG Xin, et al. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene[J]. Nature Communications, 2019, 10(1): 4348. |
53 | TIAN Peng, WEI Yingxu, YE Mao, et al. Methanol to olefins (MTO): From fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
54 | YARULINA Irina, CHOWDHURY Abhishek Dutta, MEIRER Florian, et al. Recent trends and fundamental insights in the methanol-to-hydrocarbons process[J]. Nature Catalysis, 2018, 1: 398-411. |
55 | 潘红艳, 田敏, 何志艳, 等. 甲醇制烯烃用ZSM-5分子筛的研究进展[J]. 化工进展, 2014, 33(10): 2625-2633. |
PAN Hongyan, TIAN Min, HE Zhiyan, et al. Advances in research on modified ZSM-5 molecular sieves for conversion of methanol to olefins[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2625-2633. | |
56 | 杨秀娜, 姜阳, 齐慧敏. 多级孔ZSM-5分子筛的制备及其催化甲醇芳构化反应性能[J]. 化工进展, 2016, 35(11): 3536-3541. |
YANG Xiuna, JIANG Yang, QI Huimin. Synthesis of hierarchical ZSM-5 molecular sieves and evaluation of their catalytic performance in methanol aromatization[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3536-3541. | |
57 | WANG Ting, YANG Chengguang, GAO Peng, et al. ZnZrO x integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO2 hydrogenation[J]. Applied Catalysis B: Environmental, 2021, 286: 119929. |
58 | XU Xianglong, WEN Chengyan, JIN Ke, et al. Chain-like ZSM-5 zeolite coupled with Cu-Fe3O4 for CO2 hydrogenation to light aromatics[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1183-1190. |
59 | LIU Shuang, YANG Shuang, HE Jing, et al. Efficient synthesis of chain-like ZSM-5 zeolite for the m-xylene isomerization reaction[J]. Inorganic Chemistry Communications, 2021, 128: 108564. |
60 | QUAN Yanhong, PENG Lulu, JIN Yuting, et al. Highly effective chainlike Ni/CZ5-x catalysts for catalytic reduction of p-nitrophenol: Effect of Si/Al ratio of ZSM-5 support[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111402. |
61 | JIN Yuting, QUAN Yanhong, LI Yan, et al. Probing synergistic effect of active Cu0 species and surface acidity of chainlike ZSM-5 supported copper catalysts in methanol dehydrogenation to methyl formate[J]. Fuel, 2024, 355: 129546. |
[1] | WU Zeliang, GUAN Qihui, CHEN Shixia, WANG Jun. Advances in selective hydrogenation of alkynes to alkenes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4366-4381. |
[2] | WANG Yingjie, ZHU Xinli. Highly dispersed Ni-Cu/SiO2 synthesized by sol-gel method for prompting direct deoxygenation of m-cresol to toluene [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3824-3833. |
[3] | WANG Lina, WU Jinsheng. Research progress of synthesis and application of covalent organic frameworks [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3834-3856. |
[4] | ZHANG Shirui, FAN Zhenlian, SONG Huiping, ZHANG Lina, GAO Hongyu, CHENG Shuyan, CHENG Fangqin. Research progress of fly ash supported photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4043-4058. |
[5] | YANG Xin, ZHONG Chengwei, YANG Zhishan, ZHU Weiwei, WANG Wenhao, YU Jiang. Catalytic remediation of polycyclic aromatic hydrocarbons contaminated soil by synthetic siderite and its derivatives [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4118-4127. |
[6] | ZHANG Zhen, ZHANG Fan, YUN Zhiting. Carbon reduction and techno-economic analysis of using green hydrogen in chemical and petrochemical industry [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3021-3028. |
[7] | CHEN Fuqiang, ZHONG Zhaoping, QI Renzhi. Research progress on copper-based catalysts for electrochemical reduction of carbon dioxide to formic acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3051-3060. |
[8] | CHEN Zhiqiang, XIA Mingwei, YANG Haiping, CHEN Yingquan, WANG Xianhua, CHEN Hanping. Research progress on synthesis and regulation of lignocellulose-based carbon quantum dots [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3100-3113. |
[9] | WAN Chengfeng, LI Zhida, ZHANG Chunyue, LU Lu. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239. |
[10] | LYU Qingyan, GAO Hanwen, XIE Kunyu, FAN Dongqing, HUANG Long, CHEN Zhiqiang. Current situation and challenges of mixed culture polyhydroxyalkanoate (PHA) production using waste organics [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3374-3385. |
[11] | XIE Zhongkai, SHI Weidong. Research progress of charge polarized photocatalysts in photoconversion carbon dioxide into multi-carbon chemicals [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2714-2722. |
[12] | LU Xinxin, CAI Dongren, ZHAN Guowu. Research progress in the construction of integrated catalysts based on solid precursors and their application in CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2786-2802. |
[13] | LIU Miao, JIAO Yingying, DING Ling, LI Chengcheng, HE Ying, SUN Liangliang, HAO Qingqing, CHEN Huiyong, LUO Qunxing. Acid-catalyzed dehydration of hexoses to 5-hydroxymethylfurfural: Reaction, separation and process coupling [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2526-2543. |
[14] | WANG Mengyu, FAN Hongxia, LIANG Changhai, LI Wenying. Influence of zeolite confinement effect on its acidic characterization and catalytic performance [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2600-2610. |
[15] | XIE Xiaojin, ZHANG Xiaoxue, LIU Xiaoling, CHONG Mingben, CHENG Dangguo, CHEN Fengqiu. Effect of acidic properties of single-crystalline hierarchical ZSM-5 zeolite on its activity and mass transfer in n-heptane catalytic cracking [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2661-2672. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |